• Title/Summary/Keyword: Scan Design

Search Result 506, Processing Time 0.035 seconds

Verification of System using Master-Slave Structure (Master-Slave 기법을 적용한 System Operation의 동작 검증)

  • Kim, In-Soo;Min, Hyoung-Bok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.199-202
    • /
    • 2009
  • Scan design is currently the most widely used structured Design For Testability approach. In scan design, all storage elements are replaced with scan cells, which are then configured as one or more shift registers(also called scan chains) during the shift operation. As a result, all inputs to the combinational logic, including those driven by scan cells, can be controlled and all outputs from the combinational logic, including those driving scan cells, can be observed. The scan inserted design, called scan design, is operated in three modes: normal mode, shift mode, and capture mode. Circuit operations with associated clock cycles conducted in these three modes are referred to as normal operation, shift operation, and capture operation, respectively. In spite of these, scan design methodology has defects. They are power dissipation problem and test time during test application. We propose a new methodology about scan shift clock operation and present low power scan design and short test time.

Test Methodology for Multiple Clocks Single Capture Scan Design based on JTAG IEEE1149.1 Standard (IEEE 1149.1 표준에 근거한 다중 클럭을 이용한 단일 캡쳐 스캔 설계에 적용되는 경계 주사 테스트 기법에 관한 연구)

  • Kim, In-Soo;Min, Hyoung-Bok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.980-986
    • /
    • 2007
  • Boundary scan test structure(JTAG IEEE 1149.1 standard) that supports an internal scan chain is generally being used to test CUT(circuit under test). Since the internal scan chain can only have a single scan-in port and a single scan-out port; however, existing boundary test methods can not be used when multiple scan chains are present in CUT. Those chains must be stitched to form a single scan chain as shown in this paper. We propose an efficient boundary scan test structure that adds a circuit called Clock Group Register(CGR) for multiple clocks testing within the design of multiple scan chains. The proposed CGR has the function of grouping clocks. By adding CGR to a previously existing boundary scan design, the design is modified. This revised scan design overcomes the limitation of supporting a single scan-in port and out port, and it bolsters multiple scan-in ports and out ports. Through our experiments, the effectiveness of CGR is proved. With this, it is possible to test more complicated designs that have high density with a little effort. Furthermore, it will also benefit in designing those complicated circuits.

A Study on Repair of Scan Design Rule Violations at Clock and Reset Pins of Scan Cells (스캔셀의 Clock과 Reset핀에서의 스캔 설계 Rule Violations 방지를 위한 설계 변경)

  • Kim, In-Soo;Min, Hyoung-Bok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.2
    • /
    • pp.93-101
    • /
    • 2003
  • Scan design is a structured design-for-testability technique in which flip-flops are re-designed so that the flip-flops are chained in shift registers. The scan design cannot be used in a design with scan design rule violations without modifying the design. The most important scan design rule is concerning clock and reset signals to pins of the flip-flops or scan cells. Clock and Reset pins of every scan cell must be controllable from top-level ports. We propose a new technique to re-design gated clocks and resets which violate the scan design rule concerning the clock and reset pins. This technique substitutes synchronous sequential circuits for gated clock and reset designs, which removes the clock and reset rule violations and improves fault coverage of the design. The fault coverage is improved from $90.48\%$ to $100.00\%$, from $92.31\%$ to $100.00\%$, from $95.45\%$ to $100.00\%$, from $97.50\%$ to $100.00\%$ in a design with gated clocks and resets.

Boundary Scan Test Methodology for Multiple Clock Domains (다중 시스템 클럭 도메인을 고려한 경계 주사 테스트 기법에 관한 연구)

  • Jung, Sung-Won;Kim, In-Soo;Min, Hyoung-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1850-1851
    • /
    • 2007
  • To the Boundary Scan, this architecture in Scan testing of design under the control of boundary scan is used in boundary scan design to support the internal scan chain. The internal scan chain has single scan-in port and single scan-out port that multiple scan chain cannot be used. Internal scan design has multiple scan chains, those chains must be stitched to form a scan chain as this paper. We propose an efficient Boundary Scan test structure for multiple clock testing in design.

  • PDF

Test Methodology for Multiple Clocks in Systems (시스템 내에 존재하는 다중 클럭을 제어하는 테스트 기법에 관한 연구)

  • Lee, Il-Jang;Kim, In-Soo;Min, Hyoung-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1840-1841
    • /
    • 2007
  • To the Boundary Scan, this architecture in Scan testing of design under the control of boundary scan is used in boundary scan design to support the internal scan chain. The internal scan chain has single scan-in port and single scan-out port that multiple scan chain cannot be used. Internal scan design has multiple scan chains, those chains must be stitched to form a scan chain as this paper. We propose an efficient Boundary Scan test structure for multiple clock testing in design.

  • PDF

Scan Cell Grouping Algorithm for Low Power Design

  • Kim, In-Soo;Min, Hyoung-Bok
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.130-134
    • /
    • 2008
  • The increasing size of very large scale integration (VLSI) circuits, high transistor density, and popularity of low-power circuit and system design are making the minimization of power dissipation an important issue in VLSI design. Test Power dissipation is exceedingly high in scan based environments wherein scan chain transitions during the shift of test data further reflect into significant levels of circuit switching unnecessarily. Scan chain or cell modification lead to reduced dissipations of power. The ETC algorithm of previous work has weak points. Taking all of this into account, we therefore propose a new algorithm. Its name is RE_ETC. The proposed modifications in the scan chain consist of Exclusive-OR gate insertion and scan cell reordering, leading to significant power reductions with absolutely no area or performance penalty whatsoever. Experimental results confirm the considerable reductions in scan chain transitions. We show that modified scan cell has the improvement of test efficiency and power dissipations.

Partial Scan Design based on Levelized Combinational Structure

  • Park, Sung-Ju
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.7-13
    • /
    • 1997
  • To overcome the large hardware overhead attendant in the full scan design, the concept of partial scan design has emerged with the virtue of less area and testability close to full scan. Combinational Structure has been developed to avoid the use of sequential test generator. But the patterns sifted on scan register have to be held for sequential depth period upon the aid of the dedicated HOLD circuit. In this paper, a new levelized structure is introduced aiming to exclude the need of extra HOLD circuit. The time to stimulate each scan latch is uniquely determined on this structure, hence each test pattern can e applied by scan shifting and then pulsing a system clock like the full scan but with much les scan flip-flops. Experimental results show that some sequential circuits are levelized by just scanning self-loop flip-flops.

  • PDF

LOS/LOC Scan Test Techniques for Detection of Delay Faults (지연고장 검출을 위한 LOS/LOC 스캔 테스트 기술)

  • Hur, Yongmin;Choe, Youngcheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • The New efficient Mux-based scan latch cell design and scan test of LOS/LOC modes are proposed for detection of delay faults in digital logic circuits. The proposed scan cell design can support LOS(Launch-off-Shift) and LOC(Launch-off-Capture) tests with high fault coverage and low scan power and it can alleviate the problem of the slow selector enable signal and hold signal by supporting the logic capable of switching at the operational clock speeds. Also, it efficiently controls the power dissipation of the scan cell design during scan testing. Functional operation and timing simulation waveform for proposed scan hold cell design shows improvement in at-speed test timing in both test modes.

An Efficient Technique to Protect AES Secret Key from Scan Test Channel Attacks

  • Song, Jae-Hoon;Jung, Tae-Jin;Jung, Ji-Hun;Park, Sung-Ju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.286-292
    • /
    • 2012
  • Scan techniques are almost mandatorily adopted in designing current System-on-a-Chip (SoC) to enhance testability, but inadvertently secret keys can be stolen through the scan test channels of crypto SoCs. An efficient scan design technique is proposed in this paper to protect the secret key of an Advanced Encryption Standard (AES) core embedded in an SoC. A new instruction is added to IEEE 1149.1 boundary scan to use a fake key instead of user key, in which the fake key is chosen with meticulous care to improve the testability as well. Our approach can be implemented as user defined logic with conventional boundary scan design, hence no modification is necessary to any crypto IP core. Conformance to the IEEE 1149.1 standards is completely preserved while yielding better performance of area, power, and fault coverage with highly robust protection of the secret user key.

Study to Design of Side-scan Sonar for Unmanned Surface Vehicle (무인수상정 탑재 측면주사소나 설계를 위한 모델링 연구)

  • Bae, Ho Seuk;Kim, Woo-Shik;Kim, Jung Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • In order to successfully detect and identify underwater targets located on the seabed, unmanned surface vehicles (USVs) typically acquire acoustic signals with a side-scan sonar device and reconstruct information about the target from the processed images. As the quality of the side-scan sonar images acquired by USVs depends on the environment and operating parameters, using modeling and simulation techniques to design side-scan sonar devices can help optimize the reconstruction of the sonar images. In this work, we study a side-scan sonar design for use in USVs, that takes the movement of the platform into account. First, we constructed a simulated seabed environment with underwater targets, and specified the maneuvering conditions and sonar systems. We then generated the acoustic signals from the simulated environment using the sonar equation. Finally, we successfully imaged the simulated seabed environment using simple signal processing. Our results can be used to derive USV side-scan sonar design parameters, predict the resulting sonar images in various conditions, and as a basis for determining the optimal sonar parameters of the system.