• Title/Summary/Keyword: Scaling Theory

Search Result 134, Processing Time 0.025 seconds

An Energy Optimization Technique for Latency and Quality Constrained Video Applications (지연 시간 및 화질 제약이 있는 비디오 응용을 위한 에너지 최적화 기법)

  • 임채석;하순회
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.10
    • /
    • pp.543-552
    • /
    • 2004
  • This paper proposes an energy optimization technique for latency and quality constrained video applications. It consists of two key techniques: frame-skipping technique and buffering technique. While buffering increases the slack time utilization at the OS level. frame skipping Increases the slack time itself at the application level, and both enhance the effectiveness of the dynamic voltage scaling technique. We use an H.263 encoder application as a test vehicle to which the proposed technique is applied. Experiments demonstrate that the proposed technique achieves noticeable energy reduction satisfying the given latency and video quality constraints.

Power-Minimizing DVFS Algorithm for a Video Decoder with Buffer Constraints (영상 디코더의 제한된 버퍼를 고려한 전력 최소화 DVFS 방식)

  • Jeong, Seung-Ho;Ahn, Hee-June
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9B
    • /
    • pp.1082-1091
    • /
    • 2011
  • Power-reduction techniques based on DVFS(Dynamic Voltage and Frequency Scaling) are crucial for lengthening operating times of battery powered mobile systems. This paper proposes an optimal DVFS scheduling algorithm for decoders with memory size limitation on display buffer, which is realistic constraints not properly touched in the previous works. Furthermore, we mathematically prove that the proposed algorithm is optimal in the limited display buffer and limited clock frequency model, and also can be used for feasibility check. Simulation results show the proposed algorithm outperformed the previous heuristic algorithms by 7% in average, and the performance of all algorithms using display buffers saturates at about 10 frame size.

Robust Finite-Time Stabilization for an Uncertain Nonlinear System (불확실한 비선형 시스템에 대한 강인 유한 시간 안정화)

  • Seo, Sang-Bo;Shin, Hyung-Bo;Seo, Jin-Heon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.7-14
    • /
    • 2009
  • In this paper we consider the problem of global finite-time stabilization for a class of uncertain nonlinear systems which include uncertainties. The uncertainties are time-varying disturbances or parameters belong to a known compact set. The proposed design method is based on backstepping and dynamic exponent scaling using an augmented dynamics, from which, a dynamic smooth feedback controller is derived. The finite-time stability of the closed-loop system and boundedness of the controller are preyed by the finite-time Lyapunov stability theory and a new notion 'degree indicator'.

Analysis on the Scaling of Nano Structure MOSFET (나노 구조 MOSFET의 스켈링에 대한 특성 분석)

  • 장광균;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.311-316
    • /
    • 2001
  • The technology for characteristic analysis of device for high integration is changing rapidly. Therefore to understand characteristics of high-integrated device by computer simulation and fabricate the device having such characteristics became one of very important subjects. At devices become smaller from submicron to nanometer, we have investigated MOSFET built on an epitaxial layer(EPI) of a heavily-doped ground plane, and also newEPI MOSFET for improved structure to weak point of LDD structure by TCAD(Technology Computer Aided Design) to develop optimum device structure. We analyzed and compared the EPI device characteristics such as impart ionization, electric field and I-V curve with those of lightly-doped drain(LDD) MOSFET. Also, we presented that TCAD simulator is suitable for device simulation and the scaling theory is suitable at nano structure device.

  • PDF

Investigation of Threshold Voltage in Si-Based MOSFET with Nano-Channel Length (Si-기반 나노채널 MOSFET의 문턱전압에 관한 분석)

  • 정정수;장광균;심성택;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.317-320
    • /
    • 2001
  • In this paper, we have presented the simulation results about threshold voltage at Si-based MOSFETs with channel length of nano scale. We simulated the Si-based n-channel MOSFETS with sate lengthes from 180 to 30 nm in accordance to constant voltage scaling theory. These MOSFETs had the lightly doped drain(LDD) structure, which is used for the reduction of electric field magnitude and short channel effects at the drain region. The stronger electric field at this region it due to scaling down. We investigated and analysed the threshold voltage of these devices. This analysis will provide insight into some applicable limitations at the ICs and used for basis data at VLSI.

  • PDF

Field and Strain Dependence of the Critical Current and the n-value for an Internal-tin Processed $Nb_3Sn$ Strand (내부확산법으로 제조된 $Nb_3Sn$ 초전도 선재의 임계전류 및 n-값의 자장, 변이 의존성)

  • Oh, Sang-Jun;Choi, Hee-Kyung;Lee, Chul-Hee;Kim, Kee-Man
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.152-156
    • /
    • 2008
  • Detailed field and strain dependence of the critical current and the n-value for an internal-tin processed $Nb_3Sn$ strand have been measured. Both the compressive and tensile strain is applied reversibly using Walter spiral probe made of BeCu up to 0.73 %. There is a correlation between the critical current and the n-value for the $Nb_3Sn$ strand studied in this work and the field dependence of the n-value is in agreement with a recent empirical formula. It was further shown that the critical current can be reasonably well fitted by the scaling law based on strong-coupling theory of superconductivity using the relation between the critical current and the n-value.

  • PDF

Analysis for Threshold-voltage of EPI MOSFET (EPI MOSFET의 문턱 전압 특성 분석)

  • 김재홍;고석웅;임규성;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.665-668
    • /
    • 2001
  • As reducing the physical size of devices, we can integrate more devices per the unit chip area and make its speed better. We have investigated MOSFET built on an epitaxial layer(EPI) of a heavily-doped ground plane. We compared and analyzed the characteristics of such device structure, i.e., impact ionization, electric field and I-V characteristics curve with lightly-doped drain(LDD) MOSFET. We simulated MOSFET with gate lengths from 0.10 to 0.06${\mu}{\textrm}{m}$ step 0.01${\mu}{\textrm}{m}$ in according to constant voltage scaling theory.

  • PDF

Large eddy simulation of turbulent flow using the parallel computational fluid dynamics code GASFLOW-MPI

  • Zhang, Han;Li, Yabing;Xiao, Jianjun;Jordan, Thomas
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1310-1317
    • /
    • 2017
  • GASFLOW-MPI is a widely used scalable computational fluid dynamics numerical tool to simulate the fluid turbulence behavior, combustion dynamics, and other related thermal-hydraulic phenomena in nuclear power plant containment. An efficient scalable linear solver for the large-scale pressure equation is one of the key issues to ensure the computational efficiency of GASFLOW-MPI. Several advanced Krylov subspace methods and scalable preconditioning methods are compared and analyzed to improve the computational performance. With the help of the powerful computational capability, the large eddy simulation turbulent model is used to resolve more detailed turbulent behaviors. A backward-facing step flow is performed to study the free shear layer, the recirculation region, and the boundary layer, which is widespread in many scientific and engineering applications. Numerical results are compared with the experimental data in the literature and the direct numerical simulation results by GASFLOW-MPI. Both time-averaged velocity profile and turbulent intensity are well consistent with the experimental data and direct numerical simulation result. Furthermore, the frequency spectrum is presented and a -5/3 energy decay is observed for a wide range of frequencies, satisfying the turbulent energy spectrum theory. Parallel scaling tests are also implemented on the KIT/IKET cluster and a linear scaling is realized for GASFLOW-MPI.

Multidimensional scaling of categorical data using the partition method (분할법을 활용한 범주형자료의 다차원척도법)

  • Shin, Sang Min;Chun, Sun-Kyung;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.1
    • /
    • pp.67-75
    • /
    • 2018
  • Multidimensional scaling (MDS) is an exploratory analysis of multivariate data to represent the dissimilarity among objects in the geometric low-dimensional space. However, a general MDS map only shows the information of objects without any information about variables. In this study, we used MDS based on the algorithm of Torgerson (Theory and Methods of Scaling, Wiley, 1958) to visualize some clusters of objects in categorical data. For this, we convert given data into a multiple indicator matrix. Additionally, we added the information of levels for each categorical variable on the MDS map by applying the partition method of Shin et al. (Korean Journal of Applied Statistics, 28, 1171-1180, 2015). Therefore, we can find information on the similarity among objects as well as find associations among categorical variables using the proposed MDS map.

Allometric Relations of Take-off Speed and Power with Body Mass of Anuran Amphibians

  • Choi, In-Ho;Shin, Jae-Seung;Kim, Mi-Hyun
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.477-481
    • /
    • 1998
  • Previous studies have postulated that isometric animals exert similar locomotory capacity (speed, distance) because the amount of energy available for the motion would be the same regardless of body mass (m). To test propriety of this theory, we examined body shape and take-off potential of two frog species, Rana nigromaculata (powerful jumpers) and Bombina orientalis (slow hoppers). Morphological measurements included thigh muscle mass (indicative of total muscle force), hindlimb length (L, determining acceleration distance), and interilial width (shaping take-off motion). To gauge locomotory capacity, take-off speed (v) and take-off angle ($\theta$) were measured from video analyses, and jump distance (R) and take-off Power ($P_{t}$ ) were calculated from equations $R=V^{2}sin2\theta/g$ and ($P_{t}$$㎷^{3}/2L$(where g is the gravitational constant). Scaling exponents of morphometric variables for both species were 0.96-1.11 for thigh muscle mass, 0.28-0.29 for hindlimb length, and 0.30-0.36 for interilial width. Scaling exponents of locomotory performance for the two species were -0.01-0.14 for take-off speed, 0.24-0.31 for jump distance, and 0.66-0.84 for take-off power. The results demonstrate that the frogs of this study showed isometric body shape within species, but that take-off response changed allometrically with body mass, indicating that these data did not fully support the previous proposition. An exception was found in take-off speed of B. orientalis, in which the speed changed little with body mass (slope=-0.01). These findings suggest that the energy availability approach did not properly explain the apparent allometric relations of the take-off response in these animals and that an alternative model such as a power production approach may be worth addressing.

  • PDF