DOI QR코드

DOI QR Code

Large eddy simulation of turbulent flow using the parallel computational fluid dynamics code GASFLOW-MPI

  • Zhang, Han (Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology) ;
  • Li, Yabing (Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology) ;
  • Xiao, Jianjun (Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology) ;
  • Jordan, Thomas (Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology)
  • Received : 2017.06.02
  • Accepted : 2017.08.03
  • Published : 2017.09.25

Abstract

GASFLOW-MPI is a widely used scalable computational fluid dynamics numerical tool to simulate the fluid turbulence behavior, combustion dynamics, and other related thermal-hydraulic phenomena in nuclear power plant containment. An efficient scalable linear solver for the large-scale pressure equation is one of the key issues to ensure the computational efficiency of GASFLOW-MPI. Several advanced Krylov subspace methods and scalable preconditioning methods are compared and analyzed to improve the computational performance. With the help of the powerful computational capability, the large eddy simulation turbulent model is used to resolve more detailed turbulent behaviors. A backward-facing step flow is performed to study the free shear layer, the recirculation region, and the boundary layer, which is widespread in many scientific and engineering applications. Numerical results are compared with the experimental data in the literature and the direct numerical simulation results by GASFLOW-MPI. Both time-averaged velocity profile and turbulent intensity are well consistent with the experimental data and direct numerical simulation result. Furthermore, the frequency spectrum is presented and a -5/3 energy decay is observed for a wide range of frequencies, satisfying the turbulent energy spectrum theory. Parallel scaling tests are also implemented on the KIT/IKET cluster and a linear scaling is realized for GASFLOW-MPI.

Keywords

References

  1. Y.S. Chin, P. Mathew, G. Glowa, R. Dickson, Z. Liang, B. Leitch, D. Duncan, A. Vasic, A. Bentaib, C. Journaeau, J. Malet, E. Studer, N. Meynet, P. Piluso, T. Gelain, N. Michielsen, S. Peillon, E. Porcheron, T. Albiol, B. Clement, M. Sonnenkalb, G. Weber, W. Klein-Hessling, S. Arndt, J. Yanez, A. Kotchourku, M. Kuznetsov, M. Sangiorgi, J. Fontanet, L.E. Herranz, C. Garcia de la Rua, A.E. Santiago, M. Andreani, J. Dreier, D. Paladino, R.Y. Lee, Organisation for Economic Co-Operation and Development, Nuclear Energy Agency-OECD/NEA, Committee on the Safety of Nuclear Installations-CSNI, Containment Code Validation Matrix, Le Seine Saint-Germain, 12 boulevard desIles, F-92130, Issyles-Moulineaux, France, 2014.
  2. S. Gupta, E. Schmidt, B. von Laufenberg, M. Freitag, G. Poss, F. Funke, G. Weber, THAI test facility for experimental research on hydrogen and fission product behaviour in light water reactor containments, Nucl. Eng. Des. 294 (2015) 183-201. https://doi.org/10.1016/j.nucengdes.2015.09.013
  3. J. Malet, E. Porcheron, P. Cornet, P. Brun, O. Norvez, B. Menet, L. Thause, ISP-47, International Standard Problem on Containment thermal-hydraulics, Step 1: TOSQAN-MISTRA, Phase A: airsteam mixtures TOSQAN experimental results, IRSN Rapport DPEA/SERAC/LPMAC/02-45, Decembre, 2002.
  4. J. Malet, E. Porcheron, P. Cornet, P. Brun, B. Menet, J. Vendel, ISP-47, International Standard Problem on Containment thermal-hydraulics, Step 1: TOSQAN-MISTRA, TOSQAN Phase B: air-steamehelium mixtures, Comparison Code-Experiments, IRSN Rapport DSU/SERAC/LEMAC/05-19, 2005.
  5. GOTHIC, Containment Analysis Package User Manual, Version 7.2a, Numerical Applications, Inc., 2006. Report NAI 8907-02, Revision 17.
  6. SNL, MELCOR Computer Code Manual, vol. 1: Primer and Users' Guide, Version 2.1, Sandia National Laboratories, NUREG/CR-6119, vol. 1, Rev 3179, 2011.
  7. SNL, MELCOR Computer Code Manual, vol. 2: Reference Manual, Version 2.1, Sandia National Laboratories, NUREG/CR-6119, vol. 2, Rev 3194, 2011.
  8. S. Kudriakov, F. Dabbene, E. Studer, A. Beccantini, J.P. Magnaud, H. Paillere, A. Bentaib, A. Bleyer, J. Malet, E. Porcheron, C. Caroli, The TONUS CFD code for hydrogen risk analysis: physical models, numerical schemes and validation matrix, Nucl. Eng. Des. 238 (2008) 551-565. https://doi.org/10.1016/j.nucengdes.2007.02.048
  9. M. Houkema, N.B. Siccama, J.A. Lycklama Nijeholt, E.M.J. Komen, Validation of the CFX-4 CFD Code for Containment Thermal-Hydraulics, Nucl. Eng. Des. 238 (2008) 590-599. https://doi.org/10.1016/j.nucengdes.2007.02.033
  10. H. Wilkening, L. Ammirabile, Simulation of helium release in the Battelle Model Containment facility using OpenFOAM, Nucl. Eng. Des. 265 (2013) 402-410. https://doi.org/10.1016/j.nucengdes.2013.08.070
  11. J. Xiao, J.R. Travis, T. Jordan, P. Royl, G.A. Necker, R. Redlinger, A. Svishchev, GASFLOW-III: A Computational Fluid Dynamics Code for Gases, Aerosols and Combustion, Volume 1: Theory and Computational Model, Karlsruhe Institute of Technology Report, 2014. Revision 3.5.
  12. J. Xiao, J.R. Travis, T. Jordan, P. Royl, G.A. Necker, R. Redlinger, A. Svishchev, GASFLOW-III: A Computational Fluid Dynamics Code for Gases, Aerosols and Combustion, Volume 2: User's Manual, Karlsruhe Institute of Technology Report, 2014. Revision 3.5.
  13. H. Dimmelmeier, J. Eyink, M.A. Movahed, Computational validation of the EPR combustible gas control system, Nucl. Eng. Des. 249 (2012) 118-124. https://doi.org/10.1016/j.nucengdes.2011.08.053
  14. J. Xiao, J.R. Travis, W. Breitung, T. Jordan, Numerical analysis of hydrogen risk mitigation measures for support of ITER licensing, Fusion Eng. Des. 85 (2010) 205-214. https://doi.org/10.1016/j.fusengdes.2009.12.008
  15. P. Royl, H. Rochholz, W. Breitung, J.R. Travis, G. Necker, Analysis of steam and hydrogen distributions with PAR mitigation in NPP containments, Nucl. Eng. Des. 202 (2000) 231-248. https://doi.org/10.1016/S0029-5493(00)00332-0
  16. P. Kostka, Z. Techy, J.J. Sienicki, Hydrogen mixing analyses for a VVER containment, in: 10th International Conference on Nuclear Engineering, Arlington, VA, USA, 2002. CD-ROM.
  17. J. Kim, U. Lee, S.-W. Hong, S.-B. Kim, H.-D. Kim, Spray effect on the behavior of hydrogen during severe accidents by a loss of coolant accidents in the APR1400 containment, Int. Commun. Heat Mass Transfer 33 (2006) 1207-1216. https://doi.org/10.1016/j.icheatmasstransfer.2006.08.014
  18. J. Xiao, J.R. Travis, P. Royl, G. Necker, A. Svishchev, T. Jordan, Three-dimensional all-speed CFD code for safety analysis of nuclear reactor containment: status of GASFLOW parallelization, model development, validation and application, Nucl. Eng. Des. 301 (2016) 290-310. https://doi.org/10.1016/j.nucengdes.2015.12.033
  19. P. Royl, J. Xiao, T. Jordan, Blind simulations of THAI test TH27 with GASFLOWMPI for participation in the international benchmark conducted within the German THAI Program, Workshop Application of CFD/CFMD Codes (CFD4NRS_6) September 13-15, Cambridge, Ma, USA, 2016.
  20. M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand. 49 (1952) 409-436. https://doi.org/10.6028/jres.049.044
  21. C.C. Paige, M.A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12 (1975) 617-629. https://doi.org/10.1137/0712047
  22. Y. Saad,M.H. Schultz, GMRES: a generalizedminimal residual algorithmfor solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986) 856-869. https://doi.org/10.1137/0907058
  23. P. Royl, J.R. Travis, J. Kim, GASFLOW-III: A Computational Fluid Dynamics Code for Gases, Aerosols and Combustion, Volume 3: Assessment Manual, Karlsruhe Institute of Technology Report, 2014. Revision 1.0.
  24. H. Zhang, The development and validation of the large eddy simulation (LES) turbulent model in GASFLOW-MPI, GASFLOW Users' meeting, Karlsruhe, Germany, 2016. CD-ROM.
  25. P. Sagaut, Large Eddy Simulation for Incompressible Flows: An Introduction, Scientific computation, Springer-Verlag, Berlin, 2001.
  26. Ansys Fluent, Theory Guide, Release 14.0, Ansys Inc, 2011.
  27. G. Grotzbach, M. Worner, Direct numerical and large eddy simulations in nuclear applications, Int. J. Heat Fluid Flow 20 (1999) 222-240. https://doi.org/10.1016/S0142-727X(99)00012-0
  28. Y. Saad, A. Henk Van der Vorst, Iterative solution of linear systems in the 20th century, J. Comput. Appl. Math. 123 (2000) 1-33. https://doi.org/10.1016/S0377-0427(00)00412-X
  29. Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Pub. Co., Boston, 1996.
  30. T. Chan, H. van der Vorst, Approximate and incomplete factorizations, in: D.E. Keyes, A. Samed, V. Venkatakrishnan (Eds.), Parallel Numerical Algorithms, ICASE/LaRC Interdisciplinary Series in Science and Engineering, Vol. 4, Kluwer Academic, Dordecht, 1997, pp. 167-202.
  31. S. Jovic, D.M. Driver, Backward-facing step measurements at low Reynolds number, Re=5000, NASA Technical Memorandum NO: 108807, 1994, pp. 1-24.
  32. P.R. Spalart, Direct simulation of a turbulent boundary layer up to Re=1410, J. Fluid Mech. 187 (1988) 61-98. https://doi.org/10.1017/S0022112088000345
  33. B. Panjwani, I.S. Ertesvag, A. Gruber, K.E. Rian, Large eddy simulation of backward facing step flow, in: 5th National Conference on Computational Mechanics, MekIT09, Trondheim, Norway, 2009.
  34. Z. Yang, Large-eddy simulation: past, present and the future, Chin. J. Aeronaut. 28 (2015) 11-24. https://doi.org/10.1016/j.cja.2014.12.007
  35. H. Le, P. Moin, J. Kim, Direct numerical simulation of turbulent flow over a backward-facing step, J. Fluid Mech. 330 (1997) 349-374. https://doi.org/10.1017/S0022112096003941
  36. B. Zhang, Research and application of filtering grid scale and meshing adaptive-control strategy for large eddy simulation, Shanghai Jiao Tong University, 2011. Ph.D. thesis.
  37. B. Zhang, T. Wang, C. Gu, Y. Dai, An adaptive control strategy for proper mesh distribution in large eddy simulation, J. Hydrodyn. 22 (2010) 865-871. https://doi.org/10.1016/S1001-6058(09)60127-X
  38. R.V. Westphal, J.P. Johnston, Effect of initial conditions on turbulent reattachment downstream of a backward-facing step, AIAA J. 22 (1984) 1727-1732. https://doi.org/10.2514/3.8844
  39. Y. Dubief, F. Delcayre, On coherent-vortex identification in turbulence, J. Turbul 1 (2000) 1-22. https://doi.org/10.1088/1468-5248/1/1/001

Cited by

  1. Numerical Investigation and Parametric Study on Thermal-Hydraulic Characteristics of Particle Bed Reactors for Nuclear Thermal Propulsion vol.206, pp.8, 2017, https://doi.org/10.1080/00295450.2020.1760703
  2. Numerical investigation of light gas release, stratification and dissolution in TH22 test facility using 3-D CFD code GASFLOW-MPI vol.46, pp.46, 2017, https://doi.org/10.1016/j.ijhydene.2021.04.185