• 제목/요약/키워드: Scale-dependent modeling

검색결과 67건 처리시간 0.026초

Mesoscale modeling of the temperature-dependent viscoelastic behavior of a Bitumen-Bound Gravels

  • Sow, Libasse;Bernard, Fabrice;Kamali-Bernard, Siham;Kebe, Cheikh Mouhamed Fadel
    • Coupled systems mechanics
    • /
    • 제7권5호
    • /
    • pp.509-524
    • /
    • 2018
  • A hierarchical multi-scale modeling strategy devoted to the study of a Bitumen-Bound Gravel (BBG) is presented in this paper. More precisely, the paper investigates the temperature-dependent linear viscoelastic of the material when submitted to low deformations levels and moderate number of cycles. In such a hierarchical approach, 3D digital Representative Elementary Volumes are built and the outcomes at a scale (here, the sub-mesoscale) are used as input data at the next higher scale (here, the mesoscale). The viscoelastic behavior of the bituminous phases at each scale is taken into account by means of a generalized Maxwell model: the bulk part of the behavior is separated from the deviatoric one and bulk and shear moduli are expanded into Prony series. Furthermore, the viscoelastic phases are considered to be thermorheologically simple: time and temperature are not independent. This behavior is reproduced by the Williams-Landel-Ferry law. By means of the FE simulations of stress relaxation tests, the parameters of the various features of this temperature-dependent viscoelastic behavior are identified.

나노 스케일 벌크 MOSFET을 위한 새로운 RF 엠피리컬 비선형 모델링 (New RF Empirical Nonlinear Modeling for Nano-Scale Bulk MOSFET)

  • 이성현
    • 대한전자공학회논문지SD
    • /
    • 제43권12호
    • /
    • pp.33-39
    • /
    • 2006
  • 나노 스케일 벌크 MOSFET의 RF 비선형 특성을 넓은 bias영역에 걸쳐 정확히 예측하기 위하여 내된 비선형 요소들을 가진 엠피리컬 비선형 모델이 새롭게 구축되었다. 먼저, 나노 스케일 벌크 MOSFET에 적합한 파라미터 추출방법을 사용하여 측정된 S-파라미터로부터 bias 종속 내부 파라미터 곡선을 추출하였다. 그 후에 비선형 캐패시턴스 및 전류원 방정식들은 추출된 bias 종속 곡선들과 3차원 fitting함으로서 엠피리컬하게 구하여졌다. 이와 같이 모델된 S-파라미터는 60nm MOSFET의 측정치와 20GHz 까지 아주 잘 일치하였으며, 이는 엠피리컬 나노 MOSFET 모델의 정확도를 증명한다

Dynamic modeling of nonlocal compositionally graded temperature-dependent beams

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi
    • Advances in aircraft and spacecraft science
    • /
    • 제5권1호
    • /
    • pp.141-164
    • /
    • 2018
  • In this paper, the thermal effect on buckling and free vibration characteristics of functionally graded (FG) size-dependent Timoshenko nanobeams subjected to an in-plane thermal loading are investigated by presenting a Navier type solution for the first time. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form and the material properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived based on Timoshenko beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared to some cases in the literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as thermal effect, material distribution profile, small scale effects, aspect ratio and mode number on the critical buckling temperature and normalized natural frequencies of the temperature-dependent FG nanobeams in detail. It is explicitly shown that the thermal buckling and vibration behaviour of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

Simulation and modeling for stability analysis of functionally graded non-uniform pipes with porosity-dependent properties

  • Peng Zhang;Jun Song;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.235-250
    • /
    • 2023
  • The present paper examines the stability analysis of the buckling differentiae of the small-scale, non-uniform porosity-dependent functionally graded (PD-FG) tube. The high-order beam theory and nonlocal strain gradient theory are operated for the mathematical modeling of nanotubes based on the Hamilton principle. In this paper, the external radius function is non-uniform. In contrast, the internal radius is uniform, and the cross-section changes along the tube length due to these radius functions based on the four types of useful mathematical functions. The PD-FG material distributions are varied in the radial direction and made with ceramics and metals. The governing partial differential equations (PDEs) and associated boundary conditions are solved via a numerical method for different boundary conditions. The received outcomes concerning different presented parameters are valuable to the design and production of small-scale devices and intelligent structures.

Finite Difference Modeling for Scale-Dependent Dispersivity in a Fractured Medium

  • Han, Choongyong;Kang, Joe M.;Choe, Jonggeun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.102-105
    • /
    • 2002
  • A new finite difference model is developed for solute transport in a fractured medium that can consider advection, adsorption, first-order decay, and scale-dependent dispersivity of individual fractures. In the model, the dispersivity of individual fractures is employed as a variable increasing with travel distance from a source. The model is verified using an analytical solution for a single fracture. A solution from the new model is independent of the outlet boundary condition of fractures, and has little numerical dispersion error.

  • PDF

A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads

  • Fenjan, Raad M.;Ahmed, Ridha A.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • 제5권4호
    • /
    • pp.349-362
    • /
    • 2020
  • Dynamic characteristics of a scale-dependent porous metal foam cylindrical shell under a traveling load have been explored within this article based on a numerical approach. Within the material texture of the metal foams, uniform and non-uniform porosities may be dispersed. Based upon differential quadrature method (DQM) and Laplace transforms, the equations of motion for a shear deformable scale-dependent shell may be solved numerically. Scale-dependent shell modeling has been provided based upon strain gradient elasticity. Solving the equations will give the shell deflection as a function of load speed. Also, it is reported that shell deflection relies on the porosity dispersion and strain gradient influences.

방사능 누출 사례일의 국내.외 라그랑지안 입자확산 모델링 결과 비교 (Lagrangian Particle Dispersion Modeling Intercomparison : Internal Versus Foreign Modeling Results on the Nuclear Spill Event)

  • 김철희;송창근
    • 한국대기환경학회지
    • /
    • 제19권3호
    • /
    • pp.249-261
    • /
    • 2003
  • A three-dimensional mesoscale atmospheric dispersion modeling system consisting of the Lagrangian particle dispersion model (LPDM) and the meteorological mesoscale model (MM5) was employed to simulate the transport and dispersion of non-reactive pollutant during the nuclear spill event occurred from Sep. 31 to Oct. 3, 1999 in Tokaimura city, Japan. For the comparative analysis of numerical experiment, two more sets of foreign mesoscale modeling system; NCEP (National Centers for Environmental Prediction) and DWD (Deutscher Wetter Dienst) were also applied to address the applicability of air pollution dispersion predictions. We noticed that the simulated results of horizontal wind direction and wind velocity from three meteorological modeling showed remarkably different spatial variations, mainly due to the different horizontal resolutions. How-ever, the dispersion process by LPDM was well characterized by meteorological wind fields, and the time-dependent dilution factors ($\chi$/Q) were found to be qualitatively simulated in accordance with each mesocale meteorogical wind field, suggesting that LPDM has the potential for the use of the real time control at optimization of the urban air pollution provided detailed meteorological wind fields. This paper mainly pertains to the mesoscale modeling approaches, but the results imply that the resolution of meteorological model and the implementation of the relevant scale of air quality model lead to better prediction capabilities in local or urban scale air pollution modeling.

전위 펀치 영역 모델링에 의한 입자 강화 금속지지 복합재의 입자 크기 의존 파손 해석 (Particle Size-Dependent Failure Analysis of Particle-Reinforced Metal Matrix Composites using Dislocation Punched Zone Modeling)

  • 서영성
    • 대한기계학회논문집A
    • /
    • 제38권3호
    • /
    • pp.275-282
    • /
    • 2014
  • 입자강화 금속기지 복합재는 입자와 기지재간의 열팽창계수 차이와 탄소성 강성도의 차이에 따라 변형률 구배가 발생하고 이로 인한 기하적 필수 전위가 입자 주위에 형성됨에 따라 변형시 입자 크기 의존 길이 스케일에 의한 강화 효과를 가지고 있다. 본 연구에서는 유한요소법을 활용하여 복합재를 압밀 성형할 때 입자 주위에 펀칭되는 기하적 필수 전위에 의한 강도 증가를 입자 주위 영역에 부가시켜 입자 의존 길이 스케일이 복합재의 입자 경계 파손 및 기지재의 연성 파손에 미치는 영향을 살펴 보았다. 파손 거동은 입자의 크기와 체적비를 달리하고, 특히 분리 에너지와 강도 등의 경계 파손 물성값을 변화시켜가는 매개변수적 계산을 수행하여 관찰하였다. 두 개의 파손 모드는 서로 영향을 미치면서 입자 크기 의존 길이 스케일에 밀접하게 연관됨을 보였다. 즉 입자의 크기가 작은 경우에 입자의 크기가 큰 경우에 비하여 입자를 둘러싸고 있는 기하적 필수 전위가 상대적으로 더 집적됨으로 인해 입자경계와 기지재의 연성 파손에 의한 복합재의 파손 개시가 지연되고 파손이 진행되는 동안의 유동 응력 감소도 상대적으로 작은 것을 보였다.

Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi
    • Wind and Structures
    • /
    • 제26권4호
    • /
    • pp.205-214
    • /
    • 2018
  • In this paper, the thermo-mechanical buckling characteristics of functionally graded (FG) size-dependent Timoshenko nanobeams subjected to an in-plane thermal loading are investigated by presenting a Navier type solution for the first time. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form and the material properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal governing equations are derived based on Timoshenko beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate critical buckling temperature results of the FG nanobeams as compared to some cases in the literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as material distribution profile, small scale effects and aspect ratio on the critical buckling temperature of the FG nanobeams in detail. It is explicitly shown that the thermal buckling of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

Investigation of fresh concrete behavior under vibration using mass-spring model

  • Aktas, Gultekin
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.425-439
    • /
    • 2016
  • This paper deals with the behavior of fresh concrete that is under vibration using mass-spring model (MSM). To this end, behaviors of two different full scale precast concrete molds were investigated experimentally and theoretically. Experiments were performed under vibration with the use of a computer-based data acquisition system. Transducers were used to measure time-dependent lateral displacements at some points on mold while mold is empty and full of fresh concrete. Analytical modeling of molds used in experiments were prepared by three dimensional finite element method (3D FEM) using software. Modeling of full mold, using MSM, was made to solve the problem of dynamic interaction between fresh concrete and mold. Numerical displacement histories obtained from time history analysis were compared with experimental results. The comparisons show that the measured and computed results are compatible.