• Title/Summary/Keyword: Scalar Mixing

Search Result 44, Processing Time 0.025 seconds

A three-dimensional Numerical Model for the Mixing of Saltwater and Freshwater (염수와 담수의 혼합에 관한 3차원 수치모형)

  • Jang, Won-Jae;Lee, Seung-Oh;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.233-236
    • /
    • 2008
  • To analyze the saline intrusion in the place, such as an estuary, the three-dimensional numerical model is developed. In this study, the advection terms of the governing equations are discretized by upwind scheme. By using an explicit scheme for the longitudinal direction and an implicit scheme for the vertical direction, the numerical model is free from the restriction of temporal step size caused by a relatively small grid ratio. The equation of state is used to consider the density, and the scalar transport equation for salinity is employed the third order TVD to scheme to prevent unphysical oscillation near discontinuity. In order to verify saline intrusion, the numerical model is conducted to compare the previous model in the lock exchange. The present model generally show a good agreement with the previous one.

  • PDF

Numerical Studies of Supersonic Planar Mixing and Turbulent Combustion using a Detached Eddy Simulation (DES) Model

  • Vyasaprasath, Krithika;Oh, Sejong;Kim, Kui-Soon;Choi, Jeong-Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.560-570
    • /
    • 2015
  • We present a simulation of a hybrid Reynolds-averaged Navier Stokes / Large Eddy Simulation (RANS/LES) based on detached eddy simulation (DES) for a Burrows and Kurkov supersonic planar mixing experiment. The preliminary simulation results are checked in order to validate the numerical computing capability of the current code. Mesh refinement studies are performed to identify the minimum grid size required to accurately capture the flow physics. A detailed investigation of the turbulence/chemistry interaction is carried out for a nine species 19-step hydrogen-air reaction mechanism. In contrast to the instantaneous value, the simulated time-averaged result inside the reactive shear layer underpredicts the maximum rise in $H_2O$ concentration and total temperature relative to the experimental data. The reason for the discrepancy is described in detail. Combustion parameters such as OH mass fraction, flame index, scalar dissipation rate, and mixture fraction are analyzed in order to study the flame structure.

Assessment of turbulent heat flux models for URANS simulations of turbulent buoyant flows in ROCOM tests

  • Zonglan Wei;Bojan Niceno ;Riccardo Puragliesi;Ezequiel Fogliatto
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4359-4372
    • /
    • 2022
  • Turbulent mixing in buoyant flows is an essential mechanism involved in many scenarios related to nuclear safety in nuclear power plants. Comprehensive understanding and accurate predictions of turbulent buoyant flows in the reactor are of crucial importance, due to the function of mitigating the potential detrimental consequences during postulated accidents. The present study uses URANS methodology to investigate the buoyancy-influenced flows in the reactor pressure vessel under the main steam line break accident scenarios. With a particular focus on the influence of turbulent heat flux closure models, various combinations of two turbulence models and three turbulent heat flux models are utilized for the numerical simulations of three ROCOM tests which have different characteristic features in terms of the flow rate and fluid density difference between loops. The simulation results are compared with experimental measurements of the so-called mixing scalar in the downcomer and at the core inlet. The study shows that the anisotropic turbulent heat flux models are able to improve the accuracy of the predictions under conditions of strong buoyancy whilst in the weak buoyancy case, a major role is played by the selected turbulence models with essentially a negligible influence of the turbulent heat flux closure models.

Development of 2D Depth-Integrated Hydrodynamic and Transport Model Using a Compact Finite Volume Method (Compact Finite Volume Method를 이용한 수심적분형 흐름 및 이송-확산 모형 개발)

  • Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.473-480
    • /
    • 2012
  • A two-dimensional depth-integrated hydrodynamic and a depth-averaged passive scalar transport models were developed by using a Compact Finite Volume Method (CFVM) which can assure a higher order accuracy. A typical wave current interaction experimental data set was compared with the computed results by the proposed CFVM model, and resonable agreements were observed from the comparisons. One and two dimensional scalar advection tests were conducted, and very close agreements were observed with very little numerical diffusion. Finally, a turbulent mixing simulation was done in an open channel flow, and a reasonable similarity with LES data was observed.

Numerical Analysis of Cryogenic Liquid Nitrogen Jets at Supercritical Pressures using Multi-Environment Probability Density Function approach (다점 확률분포 모델을 이용한 초임계 압력 액체질소 제트 해석)

  • Jung, Kiyoung;Kim, Namsu;Kim, Yongmo
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.137-145
    • /
    • 2017
  • This paper describes numerical modeling of transcritical and supercritical fluid flows within a liquid propellant rocket engine. In the present paper, turbulence is modeled by standard $k-{\varepsilon}$ model. A conserved scalar approach in conjunction with multi-environment probability density function model is used to account for the turbulent mixing of real-fluids in the transcritical and supercritical region. The two real-fluid equations of state and dense-fluid correction schemes for mixtures are used to construct thermodynamic data library based on the conserved scalar. In this study, calculations are made on two cryogenic nitrogen jets under different chamber pressures. Sensitivity analysis for two different real-fluid equations of sate is particularly emphasized. Based on numerical results, precise structures of cryogenic nitrogen jets are discussed in detail. Numerical results show that the current real-fluid model can predict the essential features of the cryogenic liquid nitrogen jets.

Numerical Study of Laminar Flow in a Combustor with a Planar Fuel Jet (Planar-Jet형 연소내 층류유동의 전산해석)

  • Eom, Jun-Seok;Kim, Do-Hyeong;Yang, Gyeong-Su;Sin, Dong-Sin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1644-1651
    • /
    • 2000
  • In this study, the confined laminar flow and transport around a square cylinder with a planar fuel jet are numerically simulated. Both rear and front jets are considered, respectively. In each case, various ratios of the jet velocity to the fixed upstream velocity are taken into consideration. In case of the rear jet, the high mass-fraction region is formed along the streamlines from the jet exit, and the oscillation of the force on the square cylinder eventually disappears as the jet velocity is close to the upstream velocity. In case of the front jet, drag is significantly reduced when the jet velocity ratio is grater than 1. The results obtained exhibit flow and scalar-mixing charactered in a planar combustor.

Response of Ecosystem Carbon and Water Vapor Exchanges in Evolving Nocturnal Low-Level Jets

  • Hong, Jin-Kyu;Mathieu, Nathalie;Strachan, Ian B.;Pattey, Elizabeth;Leclerc, Monique Y.
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.3
    • /
    • pp.222-233
    • /
    • 2012
  • The nocturnal low-level jet makes a significant impact on carbon and water exchanges and turbulent mixing processes in the atmospheric boundary layer. This study reports a case study of nocturnal surface fluxes such as $CO_2$ and water vapor in the surface layer observed at a flat and homogeneous site in the presence of low-level jets (LLJs). In particular, it documents the temporal evolution of the overlying jets and the coincident response of surface fluxes. The present study highlights several factors linking the evolution of low-level jets to surface fluxes: 1) wavelet analysis shows that turbulent fluxes have similar time scales with temporal scale of LLJ evolution; 2) turbulent mixing is enhanced during the transition period of low-level jets; and 3) $CO_2$, water vapor and heat show dissimilarity from momentum during the period. We also found that LLJ activity is related not only to turbulent motions but also to the divergence of mean flow. An examination of scalar profiles and turbulence data reveal that LLJs transport $CO_2$ and water vapor by advection in the stable boundary layer, suggesting that surface fluxes obtained from the micrometeorological method such as nocturnal boundary layer budget technique should carefully interpreted in the presence of LLJs.

Numerical Study on Turbulent Nonpremixed Pilot Stabilized Flame using the Transported Probability Density Function Model (수송확률밀도함수 모델을 이용한 난류비예혼합 파일럿 안정화 화염장 해석)

  • Lee, Jeong-Won;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.15-21
    • /
    • 2010
  • The transported probability density function(PDF) model has been applied to simulate the turbulent nonpremixed piloted jet flame. To realistically account for the mixture fraction PDF informations on the turbulent non-premixed jet flame, the present Lagrangian PDF transport approach is based on the joint velocity-composition-turbulence frequency PDF formulation. The fluctuating velocity of stochastic fields is modeled by simplified Langevin model(SLM), turbulence frequency of stochastic fields is modeled by Jayesh-Pope model and effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate the present approach, the numerical results obtained by the joint velocity-composition-turbulence frequency PDF model are compared with experimental data in terms of the unconditional and conditional means of mixture fraction, temperature and species and PDFs.

Depth-Integrated Models for Turbulent Flow and Transport by Long Wave and Current (흐름과 장파에 의해 발생하는 난류 및 수송모의를 위한 수심적분형 모형)

  • Kim, Dae-Hong;Lynett, Patrick
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.546-550
    • /
    • 2010
  • 흐름과 장파에 의하여 발생되는 난류의 subgrid scale mixing effects를 고려할 수 있는 수심적분형 모형(depth-integrated model)을 제시하였다. 완전비선형의 수심적분형 모형은 약분산(weakly dispersive) 환경에서 흐름의 회전성(rotational)을 고려하도록 perturbation approach를 이용하여 유도되었다. 동일한 방법을 이용하여 수심적분형 이송확산방정식(depth-integrated scalar transport equation)을 유도하였다. 방정식은 4차정확도의 유한체적기법을 이용하여 해석하였으며, 다양한 혼합양상을 보이는 흐름에 대한 수치모의를 수행하였다.

  • PDF

A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow (IV) -On the Cylinder Wake with Various Heating Rates- (열성층유동장에 놓인 원주후류의 특성에 대한 연구 (4) -가열량의 변화에 따른 원주후류에 대하여-)

  • 김경천;정양범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1340-1350
    • /
    • 1995
  • The effects of thermal stratification on the flow past a heated circular cylinder with various heating rates were examined in a wind tunnel. Turbulent intensities, r.m.s.values of temperature and turbulent convective heat flux distributions in the cylinder wakes with and without thermal stratification were measured by using a hot-wire and cold-wire combination probe. The phase averaging method was also used to estimate coherent contributions to the turbulent flow field in the near wake. The results show that the scalar mixing process is very different according to the mean temperature fields especially in the upper part of the wake. The coherent structure of the temperature field makes a large contribution to the time mean value like velocity components. However, the coherency of the temperature fluctuation is very different with the change of mean temperature fields, though the velocity coherent motions are quite similar in all experimental conditions.