• Title/Summary/Keyword: Sb doped

Search Result 225, Processing Time 0.021 seconds

Creep Deformation Behaviors of Tin Pest Resistant Solder Alloys (Tin Pest 방지 솔더합금의 크리프 특성)

  • Kim S. B.;Yu Jin;Sohn Y. C.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.47-52
    • /
    • 2005
  • Worldwide movement for prohibition of Pb usage drives imminent implementation of Pb-free solders in microelectronic packaging industry. Reliability information of Pb-free solders has not been completely constructed yet. One of the potential reliability concerns of Pb-free solders is allotropic transformation of Sn known as tin pest. Volume increase during the formation of tin pest could deteriorate the reliability of solder joints. It was also reported that the addition of soluble elements (i.e. Pb, Bi, and Sb) into Sn can effectively suppress the tin pest. However, the mechanical properties of the tin pest resistant alloys have not been studied in detail. In this study, lap shear creep test was conducted with Sn and Sn-0.7Cu based solder alloys doped with minor amount of Bi or Sb. Shear strain rates of the alloy were generally higher than those of Sn-3.5Ag based alloys. Rupture strains and corresponding Monkman- Grant products were largest for Sn-0.5Bi alloy and smallest for Sn-0.7Cu-0.5Sb alloy. Rupture surface Sn-0.5Bi alloy showed highly elongated $\beta$-Sn globules necked to rupture by shear stresses, while elongation of $\beta$-Sn globules of Sn-0.7Cu-0.5Sb alloy was relatively smaller.

  • PDF

Varistor Application of Cr-doped ZnO-Sb2O3 Ceramics (Cr을 첨가한 ZnO-Sb2O3 세라믹스의 바리스터 응용)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.854-858
    • /
    • 2010
  • In this study, we have investigated the effects of Cr dopant on the sintering and electrical properties of ZnO-$Sb_2O_3$ (ZS) ceramics for varistor application. Spinel phases including $\alpha-$ and $\beta$-type was formed at ZS system and $\alpha$-spinel was stabilized by Cr doping in ZS system. Densification of ZS and ZSCr system was retarded to $1000^{\circ}C$ by the formation of spinel at $800^{\circ}C$. The morphology and its distribution of spinel phases in ZS system was homogeneous but disturbed by Cr doping. In ZSCr the densification of ZnO compared with ZS system was more retarded by low concentration of Zn interstitial defects induced by Cr doping in addition to the effect of spinel phase formation. The defects in each system were identified as attractive coulombic center (ZS: 0.13 eV, ZSCr: 0.12 eV) and singly charged oxygen vacancy $V_0^{\cdot}$ (ZSCr: 0.33 eV). In all ZS and ZSCr system have week varistor behavior by the formation of double Schottky barrier at grain boundary but its stability of barrier was very sensitive to sintering temperature.

Dielectric and Piezoelectric Properties of (K0.5Na0.5) (Nb0.97Sb0.03)O3 Ceramics Doped with K4CuNb8O23

  • Lee, Sang-Ho;Lee, Kab-Soo;Yoo, Ju-Hyun;Jeong, Yeong-Ho;Yoon, Hyun-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.72-75
    • /
    • 2011
  • In this study, $(K_{0.5}Na_{0.5})(Nb_{0.97}Sb_{0.03})O_3+0.9$ mol% $K_{5.4}Cu_{1.3}Ta_{10}O_{29}+x$ mol% $K_4CuNb_8O_{23}$ (x = 0, 0.2, 0.6, 0.8) ceramics were prepared by a conventional mixed oxide method. Their microstructure and electric properties were investigated. The secondary phase was made by virtue of $K_4CuNb_8O_{23}$ (KCN) addition in the $(K_{0.5}Na_{0.5})(Nb_{0.97}Sb_{0.03})O_3$ system ceramics. However, the sinterability of the ceramics increased with increasing $K_4CuNb_8O_{23}$ content. At the 0.6 mol% $K_4CuNb_8O_{23}$ added composition ceramics sintered at $1,060^{\circ}C$, kp and $d_{33}$ showed the optimum values of 0.39 and 145 pC/N, respectively, suitable for piezoelectric actuator application.

Thermoelectric Properties of Co1-xNbxSb3 Prepared by Induction Melting (유도용해법으로 제조된 Co1-xNbxSb3의 열전특성)

  • Park J.B.;You S.W.;Cho K.W.;Jang K.W.;Lee J.I.;Ur S.C.;Kim I.H.
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.89-92
    • /
    • 2005
  • The induction melting was employed to prepare Nb-doped $CoSb_3$ skutterudites and their thermoelectric properties were investigated. Single phase $\delta-CoSb_3$ was successfully obtained by induction melting and subsequent annealing at $400^{\circ}C$ for 2 hrs in vacuum. The positive signs of Seebeck coefficients for all the specimens revealed that Nb atoms acted as p-type dopants by substituting Co atoms. Electrical conductivity decreased and then increased with increasing temperature, indicating mixed conduction behavior. Electrical conductivity increased by Nb doping, and it was saturated at high temperature. Maximum value of the thermoelectric power factor was shifted to higher temperature with increasing the amount of Nb doping, mainly originated from the high Seebeck coefficient around mixed conduction temperature and high electrical conductivity.

Effect of Pb Doping on the Thermoelectric Properties of Bi0.48Sb1.52Te3 (Bi0.48Sb1.52Te3의 열전특성에 대한 Pb 도핑 영향)

  • Moon, Seung Pil;Kim, Tae Wan;Kim, Sung Wng;Jeon, Woo Min;Kim, Jin Heon;Lee, Kyu Hyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.454-458
    • /
    • 2017
  • $Bi_2Te_3$-based alloys have been intensively investigated as active materials for thermoelectric power generation devices from low-temperature (< $250^{\circ}C$) waste heat. In the present study, we fabricated Pb-doped, p-type $Bi_{0.48}Sb_{1.52}Te_3$ polycrystalline bulks by using meltsolidification and spark plasma sintering techniques, and evaluated their thermoelectric transport properties in an effort to develop optimized composition for low-temperature power generation applications. The electronic and thermal transport properties of $Bi_{0.48}Sb_{1.52}Te_3$ could be manipulated by Pb doping. As a result, the temperature for a peak thermoelectric performance (zT) gradually shifted toward higher temperatures with Pb content, suggesting that thermoelectric power generation efficiency can be enhanced by controlled Pb doping.

BCTZ Addition on the Microstructure, Piezoelectric/Dielectric Properties and Phase Transition of NKLN-AS Piezoelectric Ceramics (BCTZ첨가가 NKLN-AS계 압전세라믹스의 미세구조와 압전/유전특성 및 상전이현상에 미치는 효과)

  • Lee, Woong-Jae;Ur, Soon-Chul;Lee, Young-Geun;Yoon, Man-Soon
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • Presently, the most promising family of lead-free piezoelectric ceramics is based on $K_{0.5}Na_{0.5}NbO_3$(KNN). Lithium, silver and antimony co-doped KNN ceramics show high piezoelectric properties at room temperature, but often suffer from abnormal grain growth. In the present work, the $(Ba_{0.85}Ca_{0.15})(Ti_{0.88}Zr_{0.12})O_3$ component, which has relaxor ferroelectric characteristics, was doped to suppress the abnormal grain growth. To investigate this effect, Lead-Free $0.95(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}NbO_3-(0.05-x)AgSbO_3-x(Ba_{0.85}Ca_{0.15})(Ti_{0.88}Zr_{0.12})O_3$[KNLN-AS-xBCTZ] piezoelectric ceramics were synthesized by ball mill and nanosized-milling processes in lead-Free $0.95(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}NbO_3-(0.05-x)AgSbO_3$ in order to suppress the abnormal grain growth. The nanosized milling process of calcined powders enhanced the sintering density. The phase structure, microstructure, and ferroelectric and piezoelectric properties of the KNLN-AS ceramics were systematically investigated. XRD patterns for the doped and undoped samples showed perovskite phase while tetragonality was increased with increasing BCZT content, which increase was closely related to the decrease of TO-T. Dense and uniform microstructures were observed for all of the doped BCZT ceramics. After the addition of BCTZ, the tetragonal-cubic and orthorhombic-tetragonal phase transitions shifted to lower temperatures compared to those for the pure KNNL-AS. A coexistence of the orthorhombic and tetragonal phases was hence formed in the ceramics with x = 0.02 mol at room temperature, leading to a significant enhancement of the piezoelectric properties. For the composition with x = 0.02 mol, the piezoelectric properties showed optimum values of: $d_{33}$ = 185 pC/N, $k_P$ = 41%, $T_C=325^{\circ}C$, $T_{O-T}=-4^{\circ}C$.

Amorphous Chalcogenide Solids Doped with Rare-Earth Element : Fluorescence Lifetimes and the Glass Structural Changes (희토류 원소 첨가 비정질 찰코지나이드 : 형광 수명과 유리 구조 변화의 관계)

  • Choi Yong Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.696-702
    • /
    • 2004
  • Lifetime of excited electronic states inside the 4f configuration of rare-earth elements embedded in chalcogenide glasses is very sensitive to medium-range structural changes of the host glasses. We have measured lifetimes of the 1.6$\mu\textrm{m}$ emission originating from Pr$\^$3+/ : ($^3$F$_3$, $^3$F$_4$)\longrightarrow$^3$H$_4$ transition in amorphous chalcogenide samples consisting of Ge, Sb, and Se elements. The measured lifetimes fumed out to have their maximum at the mean coordination number of -2.67, which arises accordingly from structural changes of the host glasses from 2 dimensional layers to 3 dimensional networks. This new finding supports that the so-called topological structure model together with chemically ordered network model is adequate to explain relationship between the emission properties of rare-earth elements and the medium-range structures of amorphous chalcogenide hosts with a large covalent bond nature. Thus, it is validated to predict site distribution and lifetime of rare-earth elements doped in chalcogenide glasses simply based on their mean coordination number.

Preparation of Transparent and Conducting $SnO_2$ Thin Films by RF Magnetron Sputtering Method (RF 마그네트론 스퍼터링법에 의한 투명 전도성 $SnO_2$박막의 제조)

  • 신성호;박광자;김현후
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.2
    • /
    • pp.139-146
    • /
    • 1996
  • Transparent and conducting Sb-doped $SnO_2$ thin films were prepared by rf magnetron sputtering technology. But it showed a serious damage phenomenon on the surface of as-deposited films. In order to avoid a damage caused in the substrate center and location facing to target erosion, a ring plate of masking glass was installed at 1.5 cm above target surface. The uniformity and electrical characteristic of $SnO_2$ thin films were evaluated by the control of optimal conditions in the magnetron sputtering operation such as rf power, sputtering gas pressure, and substrate temperature. In the experimental results using the operating conditions, the optimum temperature, which produced uniform and damageless films, shifted with the change of gas pressure. The rate was about $100^{\circ}C$/5 mTorr at rf power of 50 W Similarly, the optimum temperature in compensation for an increase of rf power shifted down to a proper rate.

  • PDF

Synthesis of Solution-based Sb-doped SnO2 Thin Films

  • Koo, Bon-Ryul;An, Geon-Hyoung;Lee, Yu-jin;Ahn, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.367-367
    • /
    • 2014
  • Transparent conductive oxides (TCOs) 박막은 가시광선영역에서의 높은 투과율과 낮은 저항 특성을 동시에 갖고 있어 최근 smart windows, solar cells, liquid crystal displays (LCD), organic light emitting devices (OLED)등과 같은 최첨단 기기에 필수적인 구성요소로 활발히 사용되고 있다. 따라서, 현재까지 FTO ($SnO_2:F$), ITO ($In_2O_3:Sn$), ATO ($SnO_2:Sb$)등과 같은 다양한 TCO들이 많은 연구자들에 의해 연구되고 있다. 그 중 ITO는 우수한 전기적(${\sim}10^{-4}{\Omega}cm$) 및 광학적(~85%) 특성 때문에 현재 상업적으로 활발히 응용되고 있는 대표적인 물질이다. 하지만 ITO의 주된 구성요소인 indium은 제한적인 매장량과 과도한 소비량 때문에 원가가 비싸다는 문제점이 있다. 반면에, ATO는 우수한 전기적(${\sim}10^{-3}{\Omega}cm$) 및 광학적(~80%) 특성뿐만 아니라 구성물질들의 매장량이 풍부하여 ATO의 원가가 저렴하다는 장점을 가지고 있어 현재 ITO을 대체 할 수 물질로 관심 받고 있다 [1]. 지금까지 우수한 특성을 갖는 ATO박막을 합성하는 방법으로 sol-gel spin coating, sputtering, spray pyrolysis, chemical vapor deposition (CVD)등이 알려져 있다. 이 중에서도, sol-gel spin coating과 spray pyrolysis은 solution기반의 합성법으로 분류되며 합성과정이 간단하고 비용이 저렴하다는 장점이 있고 현재까지 많은 연구가 보고되었다. 그러나, 진공기반이 아닌 우수한 특성을 갖는 solution기반의 ATO박막을 합성하기 위해서는 새로운 합성법의 개발이 학문적으로나 산업적으로도 매우 중요한 이슈이다. 따라서, 본 연구에서는 electrospray을 활용하여 solution기반의 ATO박막을 처음으로 합성하였다. 게다가 ATO박막에 열처리온도에 따른 구조, 화학, 전기, 광학적 특성을 확인하기 위하여 X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), Hall Effect Measurement System, UV spectrophotometer를 사용하였다. 이러한 실험 결과들을 바탕으로 electrospray을 통해 합성된 solution기반의 ATO박막에 자세한 특성을 본 학회에서 다루도록 하겠다.

  • PDF

The effects of additions on the PTC characteristics of semiducting $BaTiO_3$ ceramics. ($BaTiO_3$계 Ceramic 반도체의 PTC 특성의 첨가물영향)

  • Han, Sung-Jin;Kim, Sang-Young;Kang, Hee-Bok;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.310-313
    • /
    • 1989
  • The semiconducting bodies were prepared by doping the bariume titanate with $Sb_2O_3,Nb_2O_5$and by subsequent sintering in air. The sintered bodies were annealed between $1100^{\circ}C$ and $1250^{\circ}C$ for 30 minutes to 2 hours in air. The resistivity was measured as a function of temperature from $20^{\circ}C$ to $240^{\circ}C$. The anomalous effect in resistivity occurred all of the $Nb_2O_5$ and $Sb_2O_3$doped barium titanate specimens, which were sintered in air atmosphere, and the most effective PTC effect occurred through 1 hour of sintering time at $1350^{\circ}C$ and 30 minute of annealing time at $1200^{\circ}C$. The resistivity - temperature characteristics seem to be intimately related to oxygen adsorption at grain boundaries and also to the thickness of insulating layers formed at grain boundaries during heat treatment.

  • PDF