Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.7.454

Effect of Pb Doping on the Thermoelectric Properties of Bi0.48Sb1.52Te3  

Moon, Seung Pil (KEPCO Research Institute, Korea Electric Power Corporation)
Kim, Tae Wan (KEPCO Research Institute, Korea Electric Power Corporation)
Kim, Sung Wng (Department of Energy Science, Sungkyunkwan University)
Jeon, Woo Min (Department of Nano Applied Engineering, Kangwon National University)
Kim, Jin Heon (Department of Nano Applied Engineering, Kangwon National University)
Lee, Kyu Hyoung (Department of Nano Applied Engineering, Kangwon National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.7, 2017 , pp. 454-458 More about this Journal
Abstract
$Bi_2Te_3$-based alloys have been intensively investigated as active materials for thermoelectric power generation devices from low-temperature (< $250^{\circ}C$) waste heat. In the present study, we fabricated Pb-doped, p-type $Bi_{0.48}Sb_{1.52}Te_3$ polycrystalline bulks by using meltsolidification and spark plasma sintering techniques, and evaluated their thermoelectric transport properties in an effort to develop optimized composition for low-temperature power generation applications. The electronic and thermal transport properties of $Bi_{0.48}Sb_{1.52}Te_3$ could be manipulated by Pb doping. As a result, the temperature for a peak thermoelectric performance (zT) gradually shifted toward higher temperatures with Pb content, suggesting that thermoelectric power generation efficiency can be enhanced by controlled Pb doping.
Keywords
$Bi_2Te_3$; Thermoelectric; Power generation; Waste heat; Doping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. J. Snyder and E. S. Toberer, Nat. Mater., 7, 105 (2008). [DOI: https://doi.org/10.1038/nmat2090]   DOI
2 J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Scripta Mater., 52, 347 (2005). [DOI: https://doi.org/10.1016/j.scriptamat.2004.10.038]   DOI
3 J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Mater. Sci. Eng., B, 117, 334 (2005). [DOI: https://doi.org/10.1016/j.mseb.2005.01.002]   DOI
4 J. L. Cui, H. F. Xue, W. J. Xiu, W. Yang, and X. B. Xu, Scripta Mater., 55, 371 (2006). [DOI: https://doi.org/10.1016/j.scriptamat.2006.04.012]   DOI
5 J. L. Cui, H. F. Xue, W. J. Xiu, L. D. Mao, P. Z. Ying, and L. Jiang, J. Alloys Compd., 460, 426 (2008). [DOI: https://doi.org/10.1016/j.jallcom.2007.05.063]   DOI
6 J. L. Cui, H. F. Xue, and W. J. Xiu, Mater. Lett., 60, 3669 (2006). [DOI: https://doi.org/10.1016/j.matlet.2006.03.080]   DOI
7 K. H. Lee, S. M. Choi, J. W. Roh, S. W. Hwang, S. I. Kim, W. H. Shin, H. J. Park, J. H. Lee, S. W. Kim, and D. J. Yang, J. Electron. Mater., 44, 1531 (2015). [DOI: https://doi.org/10.1007/s11664-014-3446-1]   DOI
8 J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science, 321, 554 (2008). [DOI: https://doi.org/10.1126/science.1159725]   DOI
9 Y. Pei, A. Lalonde, S. Iwanaga, and G. J. Snyder, Energy Environ. Sci., 4, 2085 (2011). [DOI: https://doi.org/10.1039/C0EE00456A]   DOI
10 H. S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, and G. J. Snyder, APL Mater., 3, 041506 (2015). [DOI: https://doi.org/10.1063/1.4908244]   DOI