DOI QR코드

DOI QR Code

BCTZ Addition on the Microstructure, Piezoelectric/Dielectric Properties and Phase Transition of NKLN-AS Piezoelectric Ceramics

BCTZ첨가가 NKLN-AS계 압전세라믹스의 미세구조와 압전/유전특성 및 상전이현상에 미치는 효과

  • Lee, Woong-Jae (Department of Materials Science and Engineering, Chungju National University) ;
  • Ur, Soon-Chul (Department of Materials Science and Engineering, Chungju National University) ;
  • Lee, Young-Geun (Department of Materials Science and Engineering, Chungju National University) ;
  • Yoon, Man-Soon (Research Center for Sustainable Eco-Devices and Materials (ReSEM))
  • 이웅재 (충주대학교 신소재공학과) ;
  • 어순철 (충주대학교 신소재공학과) ;
  • 이영근 (충주대학교 신소재공학과) ;
  • 윤만순 (친환경 에너지 부품소재센터)
  • Received : 2011.11.16
  • Accepted : 2011.12.01
  • Published : 2012.01.27

Abstract

Presently, the most promising family of lead-free piezoelectric ceramics is based on $K_{0.5}Na_{0.5}NbO_3$(KNN). Lithium, silver and antimony co-doped KNN ceramics show high piezoelectric properties at room temperature, but often suffer from abnormal grain growth. In the present work, the $(Ba_{0.85}Ca_{0.15})(Ti_{0.88}Zr_{0.12})O_3$ component, which has relaxor ferroelectric characteristics, was doped to suppress the abnormal grain growth. To investigate this effect, Lead-Free $0.95(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}NbO_3-(0.05-x)AgSbO_3-x(Ba_{0.85}Ca_{0.15})(Ti_{0.88}Zr_{0.12})O_3$[KNLN-AS-xBCTZ] piezoelectric ceramics were synthesized by ball mill and nanosized-milling processes in lead-Free $0.95(K_{0.5}Na_{0.5})_{0.95}Li_{0.05}NbO_3-(0.05-x)AgSbO_3$ in order to suppress the abnormal grain growth. The nanosized milling process of calcined powders enhanced the sintering density. The phase structure, microstructure, and ferroelectric and piezoelectric properties of the KNLN-AS ceramics were systematically investigated. XRD patterns for the doped and undoped samples showed perovskite phase while tetragonality was increased with increasing BCZT content, which increase was closely related to the decrease of TO-T. Dense and uniform microstructures were observed for all of the doped BCZT ceramics. After the addition of BCTZ, the tetragonal-cubic and orthorhombic-tetragonal phase transitions shifted to lower temperatures compared to those for the pure KNNL-AS. A coexistence of the orthorhombic and tetragonal phases was hence formed in the ceramics with x = 0.02 mol at room temperature, leading to a significant enhancement of the piezoelectric properties. For the composition with x = 0.02 mol, the piezoelectric properties showed optimum values of: $d_{33}$ = 185 pC/N, $k_P$ = 41%, $T_C=325^{\circ}C$, $T_{O-T}=-4^{\circ}C$.

Keywords

References

  1. J. Long, H. Chen and Z. Meng, Mater. Sci. Eng. B, 99, 445 (2003). https://doi.org/10.1016/S0921-5107(02)00455-5
  2. M. J. Kim, J. C. Kim, Y. M. Kim, S. C. Ur and I. H Kim, Kor. J. Mater. Res., 15(7), 453 (2005) (in Korean). https://doi.org/10.3740/MRSK.2005.15.7.453
  3. Directive 2008/34/EC of the European Parliament and of the Council, Amending directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE). Official Journal of the European Union, 2008 (March). Retrieved Nov. 1, 2011 from http://eur-lex.europa.eu/en/index.htm.
  4. H. Nagata and T. Takenaka, J. Eur. Ceram. Soc., 21, 1299 (2001). https://doi.org/10.1016/S0955-2219(01)00005-X
  5. L. Egerton and D. M. Dillon, J. Am. Ceram. Soc., 42(9), 438 (1959). https://doi.org/10.1111/j.1151-2916.1959.tb12971.x
  6. V. J. Tennery and K. W. Hang, J. Appl. Phys., 39, 4749 (1968). https://doi.org/10.1063/1.1655833
  7. R. Zuo, X. Fang and C. Ye, Appl. Phys. Lett., 90, 092904 (2007). https://doi.org/10.1063/1.2710768
  8. Y. Guo, K. Kakimoto and H. Ohsato, Appl. Phys. Lett., 85, 4121 (2004). https://doi.org/10.1063/1.1813636
  9. H. Y. Park, C. W. Ahn, H. C. Song, J. H. Lee, S. Nahm, K. Uchino, H. G. Lee and H. J. Lee, Appl. Phys. Lett., 89, 062906 (2006). https://doi.org/10.1063/1.2335816
  10. D. Lin, K. W. Kwok, K. H. Lam and H. L. W. Chan, J. Appl. Phys., 101, 074111 (2007). https://doi.org/10.1063/1.2715486
  11. R. Zuo, D. Lv, J. Fu, Y. Liu and L. Li, J. Alloys Comp., 476, 836 (2009). https://doi.org/10.1016/j.jallcom.2008.09.123
  12. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  13. H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Y. Li and Z. Pei, J. Appl. Phys., 104, 034104 (2008). https://doi.org/10.1063/1.2964100
  14. M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo and S. Hirano, J. Am. Ceram. Soc., 88, 1190 (2005). https://doi.org/10.1111/j.1551-2916.2005.00229.x
  15. J. L. Jones, E. B. Slamovich and K. J. Bowman, J. Appl. Phys., 97, 034113 (2005). https://doi.org/10.1063/1.1849821
  16. M. S. Yoon, N. H. Khansur, W. J. Lee, Y. G. Lee and S. C. Ur, Adv. Mater. Res., 287, 801 (2011). https://doi.org/10.4028/www.scientific.net/AMR.287-290.801
  17. M. S. Yoon and S. C. Ur, Ceram. Int., 34, 1941 (2008). https://doi.org/10.1016/j.ceramint.2007.07.010
  18. H. Y. Park, K. H. Cho, D. S. Paik, S. Nahm, H. G. Lee and D. H. Kim, J. Appl. Phys., 102, 124101 (2007). https://doi.org/10.1063/1.2822334
  19. Y. Guo, K. Kakimoto and H. Ohsato, J. Phys. Chem. Solid., 65, 1831(2004). https://doi.org/10.1016/j.jpcs.2004.06.018
  20. S. W. Zhang, H. Zhang, B. P. Zhang and G. Zhao, J. Eur. Ceram. Soc., 29, 3235 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.06.034
  21. X. Sun, J. Deng, J. Chen, C. Sun and X. Xing, J. Am. Ceram. Soc., 92, 3033 (2009). https://doi.org/10.1111/j.1551-2916.2009.03303.x
  22. B. S. Kang, D. G. Choi and S. K. Choi., J. Kor. Phys. Soc., 32, S232 (1998).
  23. B. Jaffe, R. S. Roth and S. Marzullo, J. Appl. Phys., 25, 809 (1954). https://doi.org/10.1063/1.1721741
  24. J. Wu, D. Xiao, Y. Wang, J. Zhu, W. Shi, W. Wu, B. Zhang and J. Li, J. Alloy. Comp., 476, 782 (2009). https://doi.org/10.1016/j.jallcom.2008.09.153