• Title/Summary/Keyword: Saw device

Search Result 113, Processing Time 0.029 seconds

Effects of Deposition Conditions on Properties of AIN Films and Characteristics of AIN-SAW Devices (다양한 증착변수에 따른 AIN 박막의 물성 및 SAW 소자의 특성 분석)

  • 정준필;이명호;이진복;박진석
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.319-324
    • /
    • 2003
  • AIN thin films are deposited on Si (100) and $SiO_2$/Si substrates by using an RF magnetron sputtering method and by changing the conditions of deposition variables, such as RF power, $N_2$/Ar flow ratio, and substrate temperature ($T_sub$). For all the deposited AIN films, XRD Peak patterns are monitored to examine the effect of deposition condition on the crystal orientation. Highly (002)-oriented AIN films are obtained at following nominal deposition conditions; RF Power : 350W, $N_2$/Ar ratio = 10/20, T$_{sub}$ : $250^{\circ}C$, and working pressure = 5mTorr, respectively. AIN-based SAW devices are fabricated using a lift-off method by varying the thickness of AIN layer. Insertion losses and side-lobe rejection levels of fabricated SAW devices are extracted from their frequency response characteristics, which are also compared in terms of AIN thickness and substrate. Relationships between the film properties of AIN films and the frequency responses of SAW devices are discussed. It is concluded from the experimental results that the (002)-preferred orientation as well as the surface roughness of AIN film may play a crucial role of determining the device performances of AIN-SAW devices.s.

SAW Gas Sensor using WO$_3$Thin Film (WO$_3$박막을 이용한 SAW 가스 센서)

  • 정영우;허두오;이해민;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.187-189
    • /
    • 1995
  • A Surface Acoustic Wave Gas sensor for NO, CO, H$_2$gas detection was designed fabricated, and tested. A delay line device was designed to composite a single mode SAW oscillator which enables to measure a SAW velocity. To reduce the effect of temperature and humidity, dual delay line oscillator circuit was used. And final output was measured by digital frequency counter. NO, CO, H$_2$gas were detected by WO$_3$thin film deposited on the path of the Delay Line.

  • PDF

A study on the Fabrication and characterization of temperature Sensor using surface acoustic wave (표면 탄성파를 이용한 온도센서의 제작 및 특성에 대한 연구)

  • Park Jae-Hong;Kim Jae-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.139-145
    • /
    • 2006
  • This paper presents the design and manufacturing of a sensor using SAW and delay line in order to measure temperature. SAW sensors having single and double electrodes are manufactured on the $128^{\circ}YX-LiNbO_3$ substrate, and its process is addressed. Before manufacturing, the device is simulated using a commercial finite element program. The frequency responses of the saw sensor on the temperature change is measured. Since the center frequency on the temperature change from $-30^{\circ}C$ to $80^{\circ}C$ is linearly changed, the saw sensor is applicable to measure the temperature change or strain variation.

Effect of a 3C-SiC buffer layer on SAW properties of AlN films (3C-SiC 버퍼층이 AlN 박막형 SAW 특성에 미치는 영향)

  • Hoang, Si-Hong;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.235-235
    • /
    • 2009
  • This paper describes the influence of a polycrystalline (poly) 3C-SiC buffer layer on the surface acoustic wave (SAW) properties of poly aluminum nitride (AlN) thin films by comparing the center frequency, insertion loss, the electromechanical coupling coefficient ($k^2$), andthetemperaturecoefficientoffrequency(TCF) of an IDT/AlN/3C-SiC structure with those of an IDT/AlN/Si structure, The poly-AlN thin films with an (0002)-preferred orientation were deposited on a silicon (Si) substrate using a pulsed reactive magnetron sputtering system. Results show that the insertion loss (21.92 dB) and TCF (-18 ppm/$^{\circ}C$) of the IDT/AlN/3C-SiC structure were improved by a closely matched coefficient of thermal expansion (CTE) and small lattice mismatch (1 %) between the AlN and 3C-SiC. However, a drawback is that the $k^2(0.79%)$ and SAW velocity(5020m/s) of the AlN/3C-SiC SAW device were reduced by appearing in some non-(0002)AlN planes such as the (10 $\bar{1}$ 2) and (10 $\bar{1}$ 3) AlN planes in the AlN/SiC film. Although disadvantages were shown to exist, the use of the AlN/3C-SiC structure for SAW applications at high temperatures is possible. The characteristics of the AlN thin films were also evaluated using FT-IR spectra, XRD, and AFM images.

  • PDF

Novel SAW-based pressure sensor on $41^{\circ}YX\;LiNbO_3$ ($41^{\circ}YX\;LiNbO_3$ 기반 SAW 압력센서 개발)

  • Wang, Wen;Lee, Kee-Keun;Hwang, Jung-Soo;Kim, Gen-Young;Yang, Sang-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.33-40
    • /
    • 2006
  • This paper presents a novel surface acoustic wave (SAW)-based pressure sensor, which is composed of single phase unidirectional transducer (SPUDT), three reflectors, and a deep etched substrate for bonding underneath the diaphragm. Using the coupling of modes (COM) theory, the SAW device was simulated, and the optimized design parameters were extracted. Finite Element Methods (FEM) was utilized to calculate the bending and stress/strain distribution on the diaphragm under a given pressure. Using extracted optimal design parameters, a 440 MHz reflective delay line on 41o YX LiNbO3 was developed. High S/N ratio, shan reflection peaks, and small spurious peaks were observed. The measured S11 results showed a good agreement with simulated results obtained from coupling-of-modes (COM) modeling and Finite Element Method (FEM) analysis.

Development of Surface Acoustic Wave Sensor for Viscosity Measurement of Low Viscose Liquid Using Love Wave (Love파를 이용한 저점성 유체 점도 측정용 표면 탄성파 센서 개발)

  • Lee, Sang-Dae;Kim, Ki-Bok;Lee, Dae-Su
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.282-287
    • /
    • 2008
  • Love wave is one of the shear horizontal waves and it can propagate between two layers in liquid without energy loss. The SAW (surface acoustic wave) sensor using Love wave is very useful for real time measurement of the viscosity of liquid with high sensitivity. In this study, the 77 MHz and 155 MHz Love wave SAW sensors were fabricated and use to measure the viscosity of low viscous liquid. To generate the surface acoustic wave, the inter-digital transducers were fabricated on the quartz crystal wafer. In order to obtain the optimal thickness of the coating film (novolac photoresist) generating the Love wave on the surface of SAW device, theoretical calculation was performed. The performances of fabricated Love wave SAW sensors were tested. As test liquid, pure water and glycerol solutions having different concentrations were used. Since the determination coefficients of the regression equations for measuring the viscosity of liquid are greater than 0.98, the developed Love wave SAW sensors in this study will be very useful for precise measurement of viscosity of liquid.

Fabrication and Characteristics of Surface-Acoustic-Wave Sensors for Detecting $NO_2$ GaS ($NO_2$ 가스 감지를 위한 표면탄성파 센서의 제작 및 특성)

  • Choi, D.H.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.108-114
    • /
    • 1999
  • Surface acoustic wave (SAW) device is very attractive for gas sensor applications because of their small size, low cost, high sensitivity, and good reliability. A dual delay line surface acoustic wave $NO_2$ gas sensors have been designed and fabricated on the $LiTaO_3$ piezoelectric single crystal substrate. The capacitance of the fabricated IDTs was 326.34pF at the frequency of 79.3MHz. The maximum reflection loss of the impedence-matched IDTs was -16.74dB at the frequency of 79.3MHz. The SAW oscillator was constructed and the stable oscillation was obtained by controlling the gain of rf amplifier properly. The oscillation frequency shift of the SAW oscillator to the $NO_2$ gas was 28Hz/ppm.

  • PDF

A Study on the AlN Thin Film on A1$_2$O$_3$ Substrate Prepared by Reactive RF Magnetron Sputtering System for SAW Device Application (A1$_2$O$_3$기판위에 반응성 RF 마그네트론 스퍼터로 증착한 AlN 박막의 SAW소자 응용에 관한 연구)

  • 고봉철;손진운;김경석;엄무수;남창우;이규철
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.288-292
    • /
    • 2003
  • AlM thin film has been deposited on A1$_2$O$_3$ substrate by reactive radio frequency(RF) magnetron sputtering method under various operating conditions such as working pressure, fraction of nitrogen partial pressure, and substrate temperature. Scanning Electron Microscope(SEM), X-ray Diffraction(XRD), and Atomic Force Microscope(AFM) have been measured to find out structural properties and preferred orientation of AlN thin films. SAW velocity of IDTs/AlN/Si structure was about 5038[㎧] at the center frequency of 251.9[MHz] and insertion loss was measured to be relatively low value of 35.6[dB]. SAW velocity of IDTs/AlN/A1$_2$O$_3$ structure was improved to be about 5960[㎧] at the center frequency of 296.7[MHz].

A Study on the CMP of Lithium Tantalate Wafer (Lithium Tantalate (LiTaO3) 웨이퍼의 CMP에 관한 연구)

  • Lee, Hyun-Seop;Park, Boum-Young;Seo, Heon-Deok;Chang, One-Moon;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1276-1281
    • /
    • 2005
  • Compound semiconductors are the semiconductors composed of more than two chemical elements. Lithium Tantalate$K_I$ wafer is used for several optical devices, especially surface acoustic wave(SAW) device. Because of the lithography in SAW device process, $LiTaO_3$ polishing is needed. In this paper, the commercial slurries $(NALC02371^{TM},\; ILD1300^{TM},\;ceria slurry)$ used for chemical mechanical polishing(CMP) were tested, and the most suitable slurry was selected by measuring material removal rate and average centerline roughness$(R_a)$. From these result, it was proven that $ILD1300^{TM}$ was the most suitable slurry for $LiTaO_3$ wafer CMP due to the chemical reaction between solution in slurry and material.