• Title/Summary/Keyword: Sand-rubber mixture

Search Result 12, Processing Time 0.025 seconds

Characteristics of Sand-Rubber Mixtures under Different Strain Levels: Experimental Observation (변형률에 따른 모래-고무 혼합재의 거동 특성: 실험적 관찰)

  • Lee, Chang-Ho;Byun, Yong-Hoon;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.85-94
    • /
    • 2011
  • Mixtures of sand and rubber particles ($D_{sand}/D_{rubber}=1$) are investigated to explore their characteristics under different stain level. Mixtures are prepared with different volumetric sand fractions ($sf=V_{sand}/V_{total}$). Experimental data are gathered from a resonant column, an instrumented oedometer, and a direct shear tests. Results show that sand and rubber differently control the behavior of the whole mixture with strain level. Non-linear degradation of small strain stiffness is observed for the mixtures with $sf{\geq}0.4$, while the mixtures with low sand fraction ($sf{\leq}0.2$) show significantly high elastic threshold strain. Vertical stress-deformation increases dramatically when the rubber particle works as a member of force chain. The strength of the mixtures increases as the content of rubber particle decreases, and contractive behavior is observed in the mixtures with $sf{\leq}0.8$. Rubber particle plays different roles with strain level in the mixture: it increases a coordination number and controls a plasticity of the mixture in small strain; it prevents a buckling of force chain in intermediate strain; it leads a contractive behavior in large strain.

Compressive and tensile strength behaviors of sand reinforced with fibers and natural Para rubber

  • Sommart Swasdi;Arsit Iyaruk;Panu Promputtangkoon;Arun, Lukjan
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.361-373
    • /
    • 2023
  • This study aimed to investigate the engineering properties and mechanical behaviors of polymer-fibers treated sand. Para rubber (PR), natural fiber (NF), and geosynthetic fiber (GF) were used to reinforce poorly graded sand. A series of unconfined compressive and splitting tensile strength tests were performed to analyze the engineering behaviors and strength enhancement mechanism. The experiment results indicated that the PR-fibers mixture could firmly enhance the strength properties of sand. The stress-strain characteristics and failure patterns have been changed due to the increase of PR and fibers content. The presence of PR and fibers strengthened the sand and enhanced the stiffness and ductility behavior of the mixture. The stiffness of reinforced sand reaches an optimum state when both NF and GF are 0.5%, while the optimum PR contents are 20% and 22.5% for the mixture with NF and GF, respectively. An addition of PR and fiber into sand contributed to increasing interlocking zone and bonding of PR-sand interfacial.

Characteristics of Sand-Rubber mixtures with Strain Level (모래-고무 혼합재의 변형율 크기에 따른 거동 특성)

  • Lee, Chang-Ho;Truong, Q. Hung;Eom, Yong-Hun;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.90-96
    • /
    • 2008
  • Engineered mixtures composed of rigid sand particles and soft rubber particles are tested to investigate their behavior with strain level. Mixtures are prepared with different volumetric sand fractions (sf) to identify response using small strain resonant column, intermediate strain oedometer, and large strain direct shear tests. The small strain shear modulus and damping ratio are determined with volumetric sand fractions. The asymmetric frequency response curve increases with decreasing sand fraction. Linear responses of shear strain and damping ratio with shear strain are observed at the mixture of sf=0.2. Vertical strain increases with decreasing sand fraction. Mixtures with $04.{\leq}sf{\leq}0.6$ show the transitional stress-deformation behavior from rubber-like to sand-like behavior. The friction angle increases with the sand fraction and no apparent peak strength is observed in mixture without sf=1.0.

  • PDF

A Study on Preference of Pavement Materials for Children's outing Playground in Apartment Complex - With Focus on Jeonju City - (아파트내 어린이 놀이터 포장재의 선호도에 관한 연구 - 전주시를 중심으로 -)

  • Jeong, Soo-Gyoung;Park, Yool-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.4
    • /
    • pp.97-109
    • /
    • 2012
  • In this study this writer carried out survey and analysis on paving materials of children's playground for 40 apartment buildings with each of such apartment containing 100 households or more and which were built within last 15 years in Jeonju. As a result of analysis of such questionnaires this author could draw following conclusion. In the second half of 1990s pavement materials which were used mainly were sand and during first half of 2000s they were mixture of sand and rubber block and around 2010 they were rubber block or rubber chip pavements. Such change seemed to be a result of consideration of convenience for management and safety rather than in deference to diversity of children's outing places. Survey on the current status of pavement materials revealed need for directives by the main entity for management and their firm resolve for its implementation. And there was need for their coping with problems such as pressure of treading or lack of it or poor condition of drainage in case of sand and phenomena of pitting or dipping down, discoloring and poor drainage in case of rubber chips and rubber blocks and loosening of gaps between rubber blocks etc. Result of analysing status of usage disclosed that 50.4% of the respondents to questionnaires stated that they had experience of accidents. With regard to cause of such accident it was found that 47.5% of accidents were attributable to play facilities and 19.5% were due to paving (floor) materials thus it was disclosed that not only play facilities but also pavement materials had impact on safety for the children. Result of analysing level of satisfaction with pavement materials showed that pavement by rubber chips and blocks had higher level of satisfaction which was reflection of fear on cleanness of sand. In terms of preference rubber chip and rubber block pavements were highest and the next one was sand. Reason for such preference was based on concern with safety.

Evaluation of Impact Energy Absorption Characteristics of Flexible Sand Asphalt Pavement for Pedestrian Way (보도용 연성 샌드 아스팔트 포장의 충격흡수 특성 평가)

  • Choi, Chang-jeong;Dong, Baesun;Kim, Kwang W.;Kim, Sungun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.31-41
    • /
    • 2019
  • More than 90% of roadway in the world are paved as asphalt concrete pavement due to its excellent properties compared with other paving materials; excellent riding quality, flexibility, anti-icing property and easy maintenance-ability. In this study, to make best use of the softer property of the asphalt mixture, the flexible sand asphalt mixture (FSAM) was developed for pedestrian ways. The mix design was conducted to prepare FSAM using PG64-22 asphalt, screenings (sand) less than 5mm, crumb rubber, hydrated lime and limestone powder without coarse aggregate. The deformation strength ($S_D$), indirect tensile strength (ITS) and tensile strength ratio (TSR) tests were conducted to make sure durability of FSAM performance. The impact energy absorption and flexibility were measured by drop-boll test and the resilient modulus ($M_R$) test. The impact energy absorption of FSAM was compared with normal asphalt pavement, concrete pavement, stone and concrete block for pedestrian way. As a result of drop-boll test, FSAM showed higher impact energy absorption compared with other paving materials with the range of 18% to 43%. Impact energy absorption of FSAM increased with increasing test temperature from 5 to $40^{\circ}C$. The results of $M_R$ test at $5^{\circ}C$ showed that the flexibility of FSPA was increased further, because the $M_R$ value of the sand asphalt was measured to be 38% lower than normal dense-graded asphalt mixture (WC-1). Therefore, it was concluded that the FSAM could provide a high impact absorbing characteristics, which would improve walking quality of the pedestrian ways.

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

Geotechnical properties of tire-sand mixtures as backfill material for buried pipe installations

  • Terzi, Niyazi U.;Erenson, C.;Selcuk, Murat E.
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.447-464
    • /
    • 2015
  • Millions of scrap tires are discarded annually in Turkey. The bulk of which are currently landfilled or stockpiled. These tires consume valuable landfill space or if improperly disposed, create a fire hazard and provide a prolific breeding ground for rats and mosquitoes. Used tires pose both a serious public and environmental health problem which means that economically feasible alternatives for scrap tire disposal must be found. Some of the current uses of scrap tires are tire-derived fuel, creating barrier reefs and as an asphalt additive in the form of crumb rubber. However, there is a much need for the development of additional uses for scrap tires. One development the creation of shreds from scrap tires that are coarse grained, free draining and have a low compacted density thus offering significant advantages for use as lightweight subgrade fill and backfill material. This paper reports a comprehensive laboratory study that was performed to evaluate the use of a shredded tire-sand mixture as a backfill material in trench conditions. A steel frame test tank with glass walls was created to replicate a classical trench section in field conditions. The results of the test demonstrated that shredded tires mixed with sand have a definite potential to be effectively used as backfill material for buried pipe installations.

Combined effect of lightweight fine aggregate and micro rubber ash on the properties of cement mortar

  • Ibrahim, Omar Mohamed Omar;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.537-546
    • /
    • 2020
  • Exterior walls in buildings are exposed to various forms of thermal loads, which depend on the positions of walls. Therefore, one of the efficient methods for improving the energy competence of buildings is improving the thermal properties of insulation plaster mortar. In this study, lightweight fine aggregate (LWFA) and micro rubber ash (MRA) from recycled tires were used as partial replacements for sand. The flow ability, unit weight, compressive strength, tensile strength, thermal conductivity (K-value), drying shrinkage and microstructure scan of lightweight rubberized mortar (LWRM) were investigated. Ten mixtures of LWRM were prepared as follows: traditional cement mortar (control mixture); three mixes with different percentages of LWFA (25%, 50% and 75%); three mixes with different percentages of MRA (2.5%, 5% and 7.5%); and three mixes consisting both types with determined ratios (25% LWFA+5% MRA, 50% LWFA+5% MRA and 75% LWFA+5% MRA). The flow ability of the mortars was 22±2 cm, and LWRM contained LWFA and MRA. The compressive and tensile strength decreased by approximately 64% and 57%, respectively, when 75% LWFA was used compared with those when the control mix was used. The compressive and tensile strength decreased when 5% MRA was used. By contrast, mixes with determined ratios of LWFA and MRA affected reduced unit weight, K-value and dry shrinkage.

Characteristics of Rigid-Soft Particle Mixtures with Size Ratio (입자크기비에 따른 강-연성 혼합재의 공학적 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Rae-Hyun;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.125-135
    • /
    • 2008
  • Rigid-soft particle mixtures, which consist of sand and rubber, are investigated for the understanding of the stress-deformation and elastic moduli. Specimens are prepared with various size ratio sr between sand and rubber particles, and different volumetric sand fraction sf. Small strain shear waves are measured under $K_o$-loading condition incorporated with the stress-deformation test by using oedometer cell with bender elements. The stress-deformation and small strain shear wave characteristics of rigid-soft particle mixtures show the transition from a rigid particle behavior regime to a soft particle behavior regime under fixed size ratio. A sudden rise of $\Lambda$ factor and the maximum value of the $\zeta$ exponent in $G_{max}=\;{\Lambda}({\sigma}'_{o}/kPa)^{\zeta}$ are observed at $sf\;{\approx}\;0.4{\sim}0.6$ regardless of the size ratio sf. Transition mixture shows high sensitivity to confining stress. The volume fraction for the minimum porosity may depend on the applied stress level in the rigid-soft particle mixtures because the soft rubber particles easily distort under load. In this experimental study, the size ratio and volumetric sand fraction are the important factors which determine the behavior of rigid and soft particle mixtures.

Cyclic loading response of footing on multilayered rubber-soil mixtures

  • Tafreshi, S.N. Moghaddas;Darabi, N. Joz;Dawson, A.R.
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.115-129
    • /
    • 2018
  • This paper presents a set of results of plate load tests that imposed incremental cyclic loading to a sandy soil bed containing multiple layers of granulated rubber-soil mixture (RSM) at large model scale. Loading and unloading cycles were applied with amplitudes incrementally increasing from 140 to 700 kPa in five steps. A thickness of the RSM layer of approximately 0.4 times the footing diameter was found to deliver the minimum total and residual settlements, irrespective of the level of applied cyclic load. Both the total and residual settlements decrease with increase in the number of RSM layers, regardless of the level of applied cyclic load, but the rate of reduction in both settlements reduces with increase in the number of RSM layers. When the thickness of the RSM layer is smaller, or larger, settlements increase and, at large thicknesses may even exceed those of untreated soil. Layers of the RSM reduced the vertical stress transferred through the foundation depth by distributing the load over a wider area. With the inclusion of RSM layers, the coefficient of elastic uniform compression decreases by a factor of around 3-4. A softer response was obtained when more RSM layers were included beneath the footing damping capacity improves appreciably when the sand bed incorporates RSM layers. Numerical modeling using "FLAC-3D" confirms that multiple RSM layers will improve the performance of a foundation under heavy loading.