Browse > Article
http://dx.doi.org/10.12989/gae.2015.9.4.447

Geotechnical properties of tire-sand mixtures as backfill material for buried pipe installations  

Terzi, Niyazi U. (Aksaray University, Engineering Faculty, Department of Civil Engineering, Geotechnics Division)
Erenson, C. (Aksaray University, Engineering Faculty, Department of Civil Engineering, Geotechnics Division)
Selcuk, Murat E. (YildizTechnical University, Civil Engineering Faculty, Department of Civil Engineering, Geotechnics Division)
Publication Information
Geomechanics and Engineering / v.9, no.4, 2015 , pp. 447-464 More about this Journal
Abstract
Millions of scrap tires are discarded annually in Turkey. The bulk of which are currently landfilled or stockpiled. These tires consume valuable landfill space or if improperly disposed, create a fire hazard and provide a prolific breeding ground for rats and mosquitoes. Used tires pose both a serious public and environmental health problem which means that economically feasible alternatives for scrap tire disposal must be found. Some of the current uses of scrap tires are tire-derived fuel, creating barrier reefs and as an asphalt additive in the form of crumb rubber. However, there is a much need for the development of additional uses for scrap tires. One development the creation of shreds from scrap tires that are coarse grained, free draining and have a low compacted density thus offering significant advantages for use as lightweight subgrade fill and backfill material. This paper reports a comprehensive laboratory study that was performed to evaluate the use of a shredded tire-sand mixture as a backfill material in trench conditions. A steel frame test tank with glass walls was created to replicate a classical trench section in field conditions. The results of the test demonstrated that shredded tires mixed with sand have a definite potential to be effectively used as backfill material for buried pipe installations.
Keywords
tire rubber; backfill material; HDPE flexible pipe;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adalier, K., Elgamal, A.K. and Martin, G.R. (1998), "Foundation liquefaction countermeasures for earth embankments", J. Geotech. Geoenviron., ASCE, 124(6), 500-517.   DOI
2 Arockiasamy, M., Chaallal, O. and Limpeteeparakarn, T. (2006), "Full-scale field tests on flexible pipes under live load application", J. Perform. Constr. Fac., ASCE, 20(1), 21-27.   DOI
3 Ataoglu, S. and Reddy, D.V. (2001), "Boundary element analysis of buried pipe-soil interaction", Proceedings of the 14th International Conference on Boundary Element Technology, (Kassab, A. and Brebbia, C.A. Eds.), Witpress, Orlando, FL, USA, pp. 195-205.
4 Bernal, A., Lovell, C. and Salgado, R. (1996), "Laboratory study on the use of tire shreds and rubber-sand in backfilled and reinforced soil applications", Technical Report; Joint Transp. Res. Program, 136.
5 Bosscher, P.J., Edil, T.B. and Eldin, N.N. (1992), "Construction and performance of a shredded waste-tire test embankment", Transportation Research Record No. 1345; Transportation Research Board, Washington, D.C., USA, pp. 44-52.
6 Brachman, R.W.I., Moore, I.D. and Rowe, R.K. (2000), "The design of a laboratory facility for evaluating the structural response of small diameter buried pipes", Can. Geotech. J., 37(2), 281-295.   DOI
7 Chaallal, O., Arockiasamy, M. and Godat, A. (2014), "Field test performance of buried flexible pipes under live truck loads", J. Perform. Construct. Facil., ASCE, 29(5), 04014124.
8 Cecich, V., Gonzales, L., Hoisaeter, A., Williams, J. and Reddy, K. (1996), "Use of shredded tires as lightweight backfill material for retaining structures", Waste Manag. Res., 14(5), 433-451.   DOI
9 Corey, R., Han, J., Khatri, D.K. and Parsons, R.L. (2014), "Laboratory study on geosynthetic protection of buried steel-reinforced HDPE pipes from static loading", J. Geotech. Geoenviron., 140(6), 04014019.   DOI
10 Dalley, J.W. and Riley, W.F. (1978), Experimental Stress Analysis, (2nd Edition), McGraw-Hill, USA.
11 Edil, T.B. and Bosscher, P.J. (1994), "Engineering properties of tire chips and soil mixtures", Geotech. Test. J., 17(4), 453-464.   DOI
12 Edincliler, A. and Ayhan, V. (2010), "Influence of tire fiber inclusions on shear strength of sand", Geosynth. Int., 17(4), 183-192.   DOI
13 Faragher, E., Fleming, P.R. and Rogers, C.D.F. (2000), "Analysis of repeated-load field testing of embedded plastic pipes", Transport. Res. Rec., 1514, pp. 271-277.
14 Foose, G.J., Benson, C.H. and Bosscher, P.J. (1996), "Sand reinforced with shredded waste tires", J. Geotech. Geoenviron., 122(9), 760-767.
15 Hosseini, S.M.M.M. and Tafreshi, S.N.M. (2002), "Soil structure interaction of embedded pipes under cyclic loading conditions", Int. J. Eng., 15(2), 117-124.
16 Humphrey, D.N., Sandford, T.C., Cribbs, M.M., Gharegrat, H. and Manion, W.P. (1992), "Tire shreds as lightweight backfill for retaining walls - Phase I", A Study for the New England Transportation Consortium, Department of Civil Engineering, University of Maine, Orono, ME, USA.
17 Jeyapalan, K. and Boldon, B.A. (1986), "Performance and selection of rigid and flexible pipes", J. Transp. Eng., 112(5), 507-523.   DOI
18 Kawabata, T., Sonoda, Y., Asao, H., Morikami, H. and Nakashima, H. (2013), "Experiments for buried flexible pipe supported by non-uniform bedding", Proceedings of the 23rd International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, Anchorage, AL, USA, June-July.
19 Lee, J.H., Salgado, R., Bernal, A. and Lovell, C.W. (1999), "Shredded tires and rubber-sand as lightweight backfill", J. Geotech. Geoenviron. Eng., 125(2), 132-141.   DOI
20 Lee, Y.G., Kim, S.H., Park, J.S., Kang, J.W. and Yoon, S.J. (2014), "Full-scale field test for buried glass-fiber reinforced plastic pipe with large diameter", Compos. Struct., 120(2), 167-173.
21 Lund, H.F. (1993), Recycling Handbook, McGraw Hill, Inc., New York, NY, USA.
22 Mahboub, K.C. and Massie, P.R. (1996), "Use of scrap tire chips in asphaltic membrane", Transport. Res. Rec.: J. Transp. Res. Board, 1530(1), 59-63.   DOI
23 Manion, W.P. and Humphrey, D.N. (1992), "Use of tire shreds as lightweight and conventional embankment fill, Phase I - Laboratory", Technical Paper 91-1; Technical Services Division, Maine Department of Transportation, Augusta, ME, USA.
24 Masad, E., Taha, R., Ho, C. and Papagiannakis, T. (1996), "Engineering properties of tire/soil mixtures as a lightweight fill material", ASTM Geotech. Test. J., 19(3), 297-304.   DOI
25 Tafreshi, S.N.M. and Khalaj, O. (2008), "Laboratory tests of small-diameter HDPE pipes buried in reinforced sand under repeated-load", Geotext. Geomembr., 26(2), 145-163.   DOI
26 Moghaddas Tafreshi, S.N. and Norouzi, A.H. (2012), "Bearing capacity of a square model footing on sand reinforced with shredded tire-An experimental investigation", Construct. Build. Mater., 35, 547-556.   DOI
27 Moo-Young, H., Sellasie, K., Zeroka, D. and Sabnis, G. (2003), "Physical and chemical properties of recycled tire shreds for use in construction", J. Environ. Eng., 129(10), 921-929.   DOI
28 Rajeev, P. and Kodikara, J. (2011), "Numerical analysis of an experimental pipe buried in swelling soil", Comput. Geotech., 38(7), 897-904.   DOI
29 Rogers, C.D.F., Fleming, P.F. and Talby, R. (1996), "Use of visual methods toinvestigate influence of installation procedure on pipe-soil interaction", Transport. Res. Rec., 1541, Transportation Research Board, Washington D.C., USA.
30 Ravichandran, N. and Huggins, E.L. (2003), "Seismic response of gravity-cantilever retaining wall backfilled with shredded tire", Geotech. Eng. J. SEAGS & AGSSEA, 44(3).
31 Shalaby, A. and Khan, R.A. (2005), "Design of unsurfaced roads constructed with large size shredded rubber tires: A case study", Res. Conserv. Recycl., 44(4), 318-332.   DOI
32 Sheikh, M.N, Mashiri, M., Vinod, J. and Tsang, H. (2012), "Shear and compressibility behavior of sand-tire crumb mixtures", J. Mater. Civil Eng., 25(10), 1366-1374.
33 Spangler, M.G. (1941), "Structural design of flexible pipe culverts", Iowa Engineering Experiment Station, Bulletin No. 153, Iowa, USA.
34 Terzi, N.U., Kilic, H. and Gultekin, S. (2010), "Yanal yuklu bir model kazigin kum ortamindaki davranisinin deneysel ve numerik yontemlerle incelenmesi", Pamukkale Univ. - J. Eng. Sci., 15(1).
35 Terzi, N.U., Yilmazturk, F., Yildirim, S. and Kilic, H. (2012), "Experimental investigations of backfill conditions on the performance of high-density polyethelenepipes", Exp. Techniques, 36(2), 40-49.   DOI
36 Tsang, H.H., Lo, S.H., Xu, X. and Neaz Sheikh, M. (2012), "Seismic isolation for lowtomediumrise buildings using granulated rubber-soil mixtures: numerical study", Earthq. Eng. Struct. Dyn., 41(14), 2009-2024.   DOI
37 Warith, M.A., Evgin, E. and Benson, P.A.S. (2004), "Suitability of shredded tires for use in landfill leachate collection systems", Waste Manag., 24(10), 967-979.   DOI   ScienceOn
38 Yoon, Y.W., Sung, H.C. and Dae, S.K. (2004), "Bearing capacity and settlement of tire-reinforced sands", Geotext. Geomembr., 22(5), 439-453.   DOI   ScienceOn
39 Watkins, R.K. and Robert, J.C. (2012), "Buried flexible pipes: Deflections and stresses caused by an increase in soil cover - Highway Crossing. Bridges", Proceeding of Pipelines 2012: Innovations in Design, Construction, Operations, and Maintenance, Doing More with Less, FL, USA, August.
40 Yang, S., Lohnes, R.A. and Kjartanson, B.H. (2002), "Mechanical properties of shredded tires", Geotech. Test. J., 25(1), 44-52.   DOI
41 Youwai, S. and Bergado, D.T. (2003), "Strength and deformation characteristics of shredded rubber tire sand mixtures", Can. Geotech. J., 40(2), 254-264.   DOI
42 Zornberg, J.G., Cabral, A.R. and Viratjandr, C. (2004), "Behaviour of tire shred sand mixtures", Can. Geotech. J., 41(2), 227-241.   DOI