Browse > Article
http://dx.doi.org/10.7843/kgs.2008.24.8.125

Characteristics of Rigid-Soft Particle Mixtures with Size Ratio  

Lee, Chang-Ho (School of Civil and Environmental Eng., Georgia Institute of Technology)
Yoon, Hyung-Koo (Department of Civil, Environmental and Architectural Eng., Korea Univ.)
Kim, Rae-Hyun (Department of Civil, Environmental and Architectural Eng., Korea Univ.)
Lee, Woo-Jin (Department of Civil, Environmental and Architectural Eng., Korea Univ.)
Lee, Jong-Sub (Department of Civil, Environmental and Architectural Eng., Korea Univ.)
Publication Information
Journal of the Korean Geotechnical Society / v.24, no.8, 2008 , pp. 125-135 More about this Journal
Abstract
Rigid-soft particle mixtures, which consist of sand and rubber, are investigated for the understanding of the stress-deformation and elastic moduli. Specimens are prepared with various size ratio sr between sand and rubber particles, and different volumetric sand fraction sf. Small strain shear waves are measured under $K_o$-loading condition incorporated with the stress-deformation test by using oedometer cell with bender elements. The stress-deformation and small strain shear wave characteristics of rigid-soft particle mixtures show the transition from a rigid particle behavior regime to a soft particle behavior regime under fixed size ratio. A sudden rise of $\Lambda$ factor and the maximum value of the $\zeta$ exponent in $G_{max}=\;{\Lambda}({\sigma} are observed at $sf\;{\approx}\;0.4{\sim}0.6$ regardless of the size ratio sf. Transition mixture shows high sensitivity to confining stress. The volume fraction for the minimum porosity may depend on the applied stress level in the rigid-soft particle mixtures because the soft rubber particles easily distort under load. In this experimental study, the size ratio and volumetric sand fraction are the important factors which determine the behavior of rigid and soft particle mixtures.
Keywords
Rigid-soft particles; Shear wave velocity; Size ratio; Stiffness; Stress-strain; Volume fraction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahmed, I. (1993), "Laboratory study on properties of rubber-soils", Final Rep., Indiana Dept. of Transp., Joint Hwy., Res. Proj., Rep. No. FHWA/IN/JHRP-93/4, Purdue Univ., West Lafayette, IN
2 Fernandez, A. L. (2000), Tomographic imaging the state of stress. Ph.D. thesis, Civil Engineering, Georgia Institute of Technology, Atlanta
3 Ghazavi, M. and Sakhi, M. A. (2005), "Influence of optimized tire shreds on shear strength parameters of sand", Int. J. Geomechanics, 5(1), 58-65   DOI   ScienceOn
4 Guyon, E., Oger, L., and Plona, T. J. (1987), "Transport properties in sintered porous media composed of two particle sizes", Journal of Applied Physics D: Applied Physics, 20(12), 1637-1644   DOI   ScienceOn
5 Humphrey, D. N. and Eaton, R. A. (1995), "Field performance of tire chips as subgrade insulation for rural roads", Proc., 6th Int. Conf. on Low-Volume Roads, 2, Transportation Research Board, Washington D.C., 77-86
6 Pamukcu, S. and Akbulut, S. (2006), "Thermoelastic enhancement of damping of sand using synthetic ground rubber", J. Geotech. Geoenviron. Eng., 132(4), 501-510   DOI   ScienceOn
7 Rowe, R. K. and Mclsaac, R. (2005), "Clogging of tire shreds and gravel permeated with landfill leachate", J. Geotech. Geoenviron. Eng., 131(6), 682-693   DOI   ScienceOn
8 Tweedie, J. J., Humphrey, D. N., and Sandford, T. C. (1998). "Tire shreds as lightweight retaining wall backfill: active conditions", J. Geotech. Geoenviron. Eng., ASCE, 124(11), 1061-1070   DOI   ScienceOn
9 Vallejo, L. E. (2001), "Interpretation of the limits in shear strength in binary granular mixtures", Can. Geotech. J., 38(5), 1097-1104   DOI
10 Wu, W. Y., Benda, C., and Cauley, R. F. (1997), "Triaxial determination of shear strength of tire chips", J. Geotech. Geoenviron. Eng., 123(5), 479-482   DOI   ScienceOn
11 Zornberg, J. G., Christoper, B. R., and LaRocque, C. J. (2004a), "Application of tire bales in transportation projects", Recycled Materials in Geotechnics, ASCE Geotechnical Special Publication No.127, ASCE, 42-60
12 Ahmed, I. and Lovell, C. W. (1993), "Rubber soils as light weight geomaterials", Transportation research record 1422. Transportation Research Board, Washington D.C., 61-70
13 Lee, J. S., Dodds, J., and Santamarina, J. C. (2007), "Behavior of rigid-soft particle mixtures", J. Materials in Civil Eng., 19(2), 179-184   DOI   ScienceOn
14 Dias, R. P., Teixeira, J. A., Mota, M. G., and Yelshin, A. I. (2004), "Particulate binary mixtures: dependence of packing porosity on particle size ratio", Ind. Eng. Chem. Res. 43, 7912-7919   DOI   ScienceOn
15 Yang, S., Lohnes, R. A., and Kjartanson, B. H. (2002), "Mechanical properties of shredded tires", Geotech. Test. J., 25(1), 44-52   DOI   ScienceOn
16 Moo-Young, H., Sellasie, K., Zeroka, D., and Sabnis, G. (2003), "Physical and chemical properties of recycled tire shreds for use in construction", J. Environ. Eng., 129(10), 921-929   DOI   ScienceOn
17 Zornberg, J. G., Cabral, A., and Viratjandr, C. (2004b), "Behaviour of Tire Shred-Soil Mixtures", Can. Geotech. J., 41(2), 227-241   DOI   ScienceOn
18 Foose, G. J., Benson, C. H., and Bosscher, P. J. (1996), "Sand reinforced with shredded waste tires", J. Geotech. Geoenviron. Eng., 122(9), 760-767   DOI   ScienceOn
19 Edil, T. B. and Bosscher, P. J. (1994), "Engineering properties of tire chips and soil mixtures", Geotech. Test. J., 17(4), 453-464   DOI   ScienceOn
20 Liang, R. Y. and Lee, S. (1996), "Short-term and long-term aging behavior of rubber modified asphalt paving mixture", Recycled Rubber, Aggregate, and Filler in Asphalt paving mixtures, Transportation Research Board, No. 1530, Washington D.C., 18-24
21 Poh, P. S. H. and Broms, B. B. (1995), "Slope stabilization using old rubber tires and geotextiles", Journal of Performance of Constructed Facilities, 9(1), 76-80   DOI
22 Masad, E., Taha, R., Ho., C., and Papagionnakis, T. (1996), "Engineering properties of tire/soil mixtures as a lightweight fill material", Geotech.l Test. J., 19(3). 297-304   DOI   ScienceOn
23 Zornberg, J. G., Sitar, N., and Mitchell, J. K. (1998), "Limit equilibrium as a basis for design of geosynthetic reinforced slopes", J. Geotech. Geoenviron. Eng., 124(8), 684-698   DOI   ScienceOn
24 Aydilek, A. h., Madden, E. T., and Demirkan, M. M. (2006), "Field evaluation of a leachate collection system constructed with scrap tires", J. Geotech. Geoenviron. Eng., 132(8), 990-1000   DOI   ScienceOn
25 Lee, J. H., Salgado R., Bernal, A., and Lovell, C. W. (1999), "Shredded tires and rubber-sand as lightweight backfill", J. Geotech. Geoenviron. Eng., ASCE, 125(2), 132-141   DOI   ScienceOn
26 Viggiani, G. and Atkinson, J. H. (1995), "Interpretation of bender element tests", Geotechnique, 45(1), 149-154   DOI   ScienceOn
27 Feng, Z. Y. and Sutter, K. G. (2000), "Dynamic properties of granulated rubber sand mixtures", Geotech. Test. J., 23(3), 338-344   DOI   ScienceOn
28 Youwai, S. and Bergado, D. (2003), "Strength and deformation characteristics of shredded rubber tire-sand mixtures", Can. Geotech. J., 40(2), 254-264   DOI   ScienceOn
29 Bosscher, P. J., Edil, T. B., and Kuraoka, S. (1997), "Design of highway embankments using tire chips", J. Geotech. Geoenviron. Eng., ASCE, 123(4), 295-304   DOI   ScienceOn
30 Garga, V. K. and O'Shaughnessy, V. (2000), "Tire-reinforced earthfill. Part 1: Construction of a test fill, performance, and retaining wall design", Can. Geotech. J., 37(1), 75-96   DOI