• Title/Summary/Keyword: Sampling Oscilloscope

Search Result 14, Processing Time 0.023 seconds

Calibration of Frequency Response for a Sampling Oscilloscope (샘플링 오실로스코프의 주파수 응답특성 교정)

  • Cho, Chihyun;Lee, Dong-Joon;Lee, Joo-Gwang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.5
    • /
    • pp.344-352
    • /
    • 2018
  • We herein propose a calibration method for a sampling oscilloscope. The proposed method can correct the systematic errors in the oscilloscope such as time-based distortion and impedance mismatch. In addition, it can accurately estimate the residual jitter that remains after a time-based correction and the scale factor that varies in accordance with the setting of the pulse generator. The proposed method is validated thorough the comparison and verification with the power meter, and the uncertainty of the measurement method is analyzed.

Fabrication of High Frequency Magnetic Characteristics Measurement System Using Digital Oscilloscope and Computer Remote Control (디지털 오실로스코프와 컴퓨터 제어기법을 이용한 고주파 자기특성 측정장치 제작)

  • 김기옥;이재복;송재성;민복기
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.6
    • /
    • pp.327-333
    • /
    • 1997
  • We designed and constructed the high frequency magnetic characteristics measurement system to measure core loss, B-H curve, permeability of toroidal ferrite core, amorphous core and various materials for high frequency application. The system consists of universal equipments such as digitizing oscilloscope, signal generator, power amplifier, PC in order to make upgrade easily. The power source is composed of waveform synthesizer and power amplifier ranging from DC to 20 MHz, and output signal H and B from sample core are digitized by oscilloscope with sampling rate 1 GS/ s per channel. Computer controls power source and oscilloscope, reads data from oscilloscope, displays analyzed waveform and saves data with file. The entire procedures finishes within few seconds.

  • PDF

20 GHz Pulse Sampling Oscilloscope Based on Electro-Optic Technique (광-전자파 기반 20 GHz급 펄스 샘플링 오실로스코프)

  • Lee, Dong-Joon;Kang, No-Weon;Lee, Joo-Gwang;Kang, Tae-Weon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.927-933
    • /
    • 2011
  • This paper presents an optical sampling technique which can be used to overcome the limited bandwidth of a commercial electronic sampling oscilloscope for pulsed signal measurement. Employing an ultrafast laser with 0.1 ps pulse duration, 20 GHz electromagnetic pulses were generated through a fast photodiode. These pulses were transmitted through a microstrip line and sampled with an optically triggered electro-optic system. Two sampled 20 GHz pulses - measured independently over the transmission line with a non-contacting electro-optic method and conventional electronic one through a coaxial cable - were compared.

Calibration and Uncertainty Analysis of Sample-Time Error on High Jitter of Samplers

  • Cho, Chihyun;Lee, Joo-Gwang;Kang, Tae-Weon;Kang, No-Weon
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.169-174
    • /
    • 2018
  • In this paper, we propose an estimation method using multiple in-phase and quadrature (IQ) signals of different frequencies to evaluate the sample-time errors in the sampling oscilloscope. The estimator is implemented by ODRPACK, and a novel iteration scheme is applied to achieve fast convergence without any prior information. Monte-Carlo simulation is conducted to confirm the proposed method. It clearly shows that the multiple IQ approach achieves more accurate results compared to the conventional method. Finally, the criteria for the frequency selection and the signal capture time are investigated.

Cryogenic voltage sampling for arbitrary RF signals transmitted through a 2DEG channel

  • Kim, Min-Sik;Kim, Bum-kyu;Kim, U.J.;Choi, H.K.;Kim, Ju-Jin;Bae, Myung-Ho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.2
    • /
    • pp.23-26
    • /
    • 2022
  • A lossless transport of an arbitrary waveform in a frequency range of 106-109 Hz through a conduction channel in a cryogenic temperature is of importance for a high-speed operation of quantum device. However, it is hard to use a commercial oscilloscope to directly detect the waveform travelling in a device located in a cryogenic system. Here, we developed a cryogenic voltage sampling technique by using a Schottky barrier gate prepared on a surface of a GaAs/AlGaAs device, which revealed that an incident rectangle waveform can transport through a 1 mm long two-dimensional conduction channel without waveform deformation up to 20 MHz, while further study is needed to increase the detection frequency.

Mechanical Behavior of Fruits under Impact Loading (과실의 충격특성에 관한 연구)

  • Hong J. H.;Myung B. S.;Choe J. S.;Kim C. S.;Kim T. W.;Chung J. H.;Park J. W.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.5 s.112
    • /
    • pp.274-279
    • /
    • 2005
  • Impact is one of the major cause of damage to fruits druing varios processes from the production on the farm to the consumer. The tissue of fruits are ruptured in a very short period time less than 10ms by impact loading. Mechanical behavior of fruits under impact loading can be analyzed better with high speed sampling data acquisition system and one of them is a digital storage oscilloscope. A impact test system was developed to test the physical properties of fruits including apple, pear, and peach which may lead to a better understanding of the physical laws. The test system consisted of a digital storage oscilloscope and simple mechanism which can apply impact force to fresh produce. Rupture force, energy, and deffrmation were measured at the five levels of drop heights from 4 to 24cm fur each internal and external tissues. Rupture forces for apple and pear were in the range of 72.9 to 87.7 N and 70.8 to 84.1 N for external and internal tissues, respectively. Rupture forces far peach external tissues were in the range of 43.4 to 65.0 N.

Construction of high frequency B-H Analyzer. (고주파 교류 자기특성의 컴퓨터 계측시스템 제작)

  • Kim, Ki-Uk;Song, Jae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1170-1172
    • /
    • 1996
  • Analog-digital converter boards for use in personal computers have recently being improved markedly, many kinds of high speed(1 MHz - 10 MHz sampling rale) and over 12-bit vertical resolution A/D boards released. It can be applicable to high frequency magnetic measurements. In measurement of magnetic properties of high frequency, digitizing oscilloscope or trasient recorder are being used. but, those price are often expensive, we constructed PC controlled A-C B-H loop tracer that can measure Bs, Br, He, permeability and may be applied about 100 Hz - 20 kHz range. it use IBM PC compatible 1 M Sample/s, 12 bit A/D converter board with SSH(Simultaneous Sample and Hold).

  • PDF

A Japanese National Project for Superconductor Network Devices

  • Hidaka, M.
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 2003
  • A five-year project for Nb-based single flux quantum (SFQ) circuits supported by Japan's Ministry of Economy Trade and Industry (METI) in Japan was started in September 2002. Since April 2003, the New Energy and Industrial Technology Development Organization (NEDO) has supported this Superconductor Network Device Project. The aim of the project is to improve the integration level of Nb-based SFQ circuits to several ten thousand Josephson junctions, in comparison with their starting integration level of only a few thousand junctions. Actual targets are a 20 GHz dual processor module for the servers and a 0.96 Tbps switch module for the routers. Starting in April 2003, the Nb project was merged with SFQ circuit research using a high-T$_{c}$ superconductor (HTS). The HTS research targets are a wide-band AD converter for mobile-phone base stations and a sampling oscilloscope for wide-band waveform measurements.

  • PDF

Uncertainty Analysis of 1 GHz Band Impulse Spectrum Amplitude (1 GHz 대역 임펄스의 스펙트럼 진폭 불확도 평가)

  • Lee, Dong-Joon;Lee, Joo-Gwang;Kwon, Jae-Yong;Kang, Tae-Weon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1365-1372
    • /
    • 2012
  • This paper presents a methodology to accurately evaluate the spectral components of impulse signals which are delivered from an impulse generator through the measurement system. The complicated terms for uncertainty measurement of impulse spectrum amplitude and their analysis methods and experimental results are discussed. The expanded uncertainty of the impulse spectrum measurement is 0.015, which is believed to be the best domestic measurement capability and comparable to those of world class.

Identification of Defect Type by Analysis of a Single PD Pulse in Gas Insulated Structure (가스절연 구조에서 단일 부분방전펄스 분석에 의한 결함 판별)

  • Jo, Hyang-Eun;Kim, Sun-Jae;Jeong, Gi-Woo;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.320-325
    • /
    • 2015
  • This paper dealt with a defect identification algorithm which is based on single partial discharge (PD) pulse analysis in gas insulated structure. Four types of electrode systems such as a needle-plane, a plane-needle, a free particle and a crack inside spacer were fabricated to simulate defects in gas insulated switchgear (GIS). We measured single PD pulse by an oscilloscope with a sampling rate of 5 GS/s and a frequency bandwidth of 1 GHz. Data aquisition and signal processing were controlled by a LabVIEW program. Physical shapes of PD pulses were compared with kurtosis, skewness and time-based parameters as rising time, falling time and pulse-width. These parameters were analysed by an algorithm with a back propagation algorithm (BPA). By applying the algorithm, the identification rate was 97% for the needle-plane electrode, 96% for the plane-needle electrode, 91% for the free particle and 93% for the crack inside spacer. The results verified that the algorithm could identify the type of defects in GIS.