• Title/Summary/Keyword: Sample preparation

Search Result 1,012, Processing Time 0.029 seconds

Fabrication and Application of Micro Polymer Chip Platform for Rare Cell Sample Preparation (희귀 세포 샘플 준비를 위한 마이크로 폴리머 칩 플랫폼 제작 및 활용)

  • Park, Taehyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.3
    • /
    • pp.217-222
    • /
    • 2018
  • In this paper, a new micro polymer chip platform and protocol were developed for rare cell sample preparation. The proposed platform and protocol overcome the current limitation of the dilution method which is based on statistics and the FACS method which expensive and requires fluorescence staining. It allows collecting exact number of target cells simply and selectively because the cells are visually confirmed during the collecting process. The collected cells can be transported or spiked into a desired locations, such as a microchamber, without cell loss. This research may applicable not only to a rare cell sample preparation for Lab on a Chip cancer diagnosis, but also to a single/double/multiple cell sample preparation for a cell analysis field. To verify this platform and protocol, five human breast cancer cells (MCF-7) were collected and transported into a hemocytometer chamber.

Uncertainty in Determination of Menthol from Mentholated Cigarette (담배 중 멘톨 분석에 대한 불확도 측정)

  • 장기철;이운철;백순옥;한상빈
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.91-98
    • /
    • 2000
  • This study was carried out to evaluate the uncertainty in the analysis of menthol content from the mentholated cigarette. Menthol in the sample cigarette was extracted with methanol containing an anethole as an internal standard, and then analyzed by gas chromatography. As the sources of uncertainty associated with the analysis of menthol, were the following points tested, such as the weighing of sample, the preparation of extracting solution, the pipetting of extracting solution into the sample, the preparation of standard solution, the precision of GC injections for standard & sample solution, the GC response factor of standard solution, the reproducibility of menthol analysis, and the determination of water content in tobacco, etc. For calculating the uncertainties, type A of uncertainty was evaluated by the statistical analysis of a series of observation, and type B by the information based on supplier's catalogue and/or certificated of calibration. Sources of uncertainty were subsequently included and mathematically combined with the uncertainty arising from the assessment of accuracy to provide the overall uncertainty. It was shown that the main source of uncertainty came from the errors in the reproducibility of menthol and water determination, the purity of menthol reference material in the preparation of standard solution, and the precision of GC injections for sample solution. The errors in sample weighing and volume measurement contributed relatively little to the overall uncertainty. The expanded uncertainty in the mentholated cigarettes, Korean and American brand, at 0.95 level of statistical confidence was $\pm$0.06 and $\pm$0.07 mg/g for a menthol content of 1.89 and 2.32 mg/g, respectively.

  • PDF

Transmission Electron Microscope Sampling Method for Three-Dimensional Structure Analysis of Two-Dimensional Soft Materials

  • Lee, Sang-Gil;Lee, Ji-Hyun;Yoo, Seung Jo;Datta, Suvo Jit;Hwang, In-Chul;Yoon, Kyung-Byung;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.203-207
    • /
    • 2015
  • Sample preparation is very important for crystal structure analysis of novel nanostructured materials in electron microscopy. Generally, a grid dispersion method has been used as transmission electron microscope (TEM) sampling method of nano-powder samples. However, it is difficult to obtain the cross-sectional information for the tabular-structured materials. In order to solve this problem, we have attempted a new sample preparation method using focused ion beam. Base on this approach, it was possible to successfully obtain the electron diffraction patterns and high-resolution TEM images of the cross-section of tabular structure. Finally, we were able to obtain three-dimensional crystallographic information of novel zeolite nano-crystal of the tabular morphology by applying the new sample preparation technique.

Sample Preparation for Microstructural Characterization of Ni-Yttria-Stabilized Zirconia Anodes

  • Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.376-380
    • /
    • 2018
  • Microstructural characterization of Ni-yttria-stabilized zirconia (YSZ) anodes using secondary electron images has been limited by a lack of contrast between Ni and YSZ phases. This paper reports a sample preparation method for obtaining secondary electron images that allow the detection of Ni, YSZ, and pore phases together. Ni-YSZ anode samples were obtained by reducing NiO-YSZ samples prepared by using the mixed oxide method. Colloidal silica polishing and electrolytic etching were performed on the Ni-YSZ samples. The morphological change of the sample surface after each polishing process is examined.

Comparison of sample preparation methods for quantification of febantel, an anthelmintic agent, and its metabolites in rockfish (Sebastes schlegeli) muscle using liquid chromatography-tandem mass spectrometry (LC-MS/MS를 이용한 조피볼락 근육에서 구충제 febantel 및 그 대사체들의 정량분석을 위한 시료 전처리 방법의 비교 분석)

  • Lim, Jae-Woong;Kwon, Inyeong;Kim, Taeho;Kim, Wi-Sik;Kang, So Young
    • Journal of fish pathology
    • /
    • v.34 no.2
    • /
    • pp.261-269
    • /
    • 2021
  • This study presents the evaluation of sample extraction and purification procedure for the determination of residues of febantel and its metabolites, fenbendazole, oxfendazole and oxfendazole sulfone in rockfish (Sebastes schlegeli) muscle using liquid chromatography-tandem mass spectrometry. Residues of febantel and its metabolites in rockfish muscle were analyzed using each different sample preparation method from Korean Food Standards Codex (KFSC), Food Safety and Inspection Service (FSIS, USA), and the modified FSIS method using QuEChERS kit (FSIS-Q), respectively. Each method was compared for mean recoveries and repeatabilities. Since FSIS-Q showed higher repeatabilities (coefficient of variation, CV of 2.4%~10.9%) than those of FSIS method (CV of 4.6%~17.5%), recoveries from FSIS-Q were compared with those from KFSC method. FSIS-Q showed significantly higher recoveries of 83.1%~110.1% (P < 0.05) than those from KFSC method of 64.7%~107.4%. In addition, FSIS-Q showed a good linearity over the range of 2.5~200 ㎍/kg, and excellent sensitivities with limit of detection of 0.46~0.71 ㎍/kg and limit of quantification of 1.08~2.15 ㎍/kg. Although all the sample preparation methods turned out to be able to meet CODEX guideline for all the compounds, FSIS method and FSIS-Q validated in this study could be applied to screening and quantification for residues of febantel and its metabolites in rockfish muscle with efficient preparation procedures.

CHOOSING AN NIR INSTRUMENT AND A SAMPLE PRESENTATION OPTION PLANT AND SOIL ANALYSIS

  • Batten, Graeme-D;Blakeney, Anthony-B;Susan Ciavarella
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1022-1022
    • /
    • 2001
  • To obtain accurate and repeatable analyses using NIR technology it is important to select an NIR instrument and / or its sample presentation attachments which allow the operator to minimize sampling errors without compromising the benefits of NIR analysis -namely rapid, low cost, minimal sample preparation, minimal structural facilities, minimal hazards. For each sample type and consistency there may be different optimal combinations of instrument, sample presentation attachment, and sample preparation. This paper will consider options available to NIR users in the area of plant and soil analysis and evaluate the potential benefits and disadvantages of crop nutrient diagnoses using laboratory based and airborne imaging techniques.

  • PDF

Study on Microbiochip for Buccal Cell Lysis and DNA Purification (상피세포 시료 전처리용 마이크로바이오칩에 관한 연구)

  • Ha, Seung-Mo;Cho, Woong;Ahn, Yoo-Min;Hwang, Seung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1785-1791
    • /
    • 2010
  • This paper describes a separable microfluidic device fabricated with PDMS (polydimethylsiloxane) and glass. The device is used for sample preparation involving cell lysis and the DNA purification process. The cell lysis was performed for 2 min at $80^{\circ}C$ in a serpentine-type microreactor ($20 {\mu}l$) using a Au microheater that was integrated with a thermal microsensor on a glass substrate. The DNA that was mixed with other residual products during the cell lysis process was then filtered through a new filtration system composed of microbeads (diameter: $50 {\mu}m$) and PDMS pillars. Since the entire process (sample loading, cell lysis reaction, DNA purification, and sample extraction) was performed within 5 min in a microchip, we could reduce the sample preparation time in comparison with that for the conventional methods used in biochemistry laboratories. Finally, we verified the performance of the sample preparation chip by conducting PCR (polymerase chain reaction) analysis of the chip product.

A Photosensitive Glass Chip for DNA Purification of Nucleic Acid Probe Assay

  • Kim, Joon-Ho;Kim, Byung-Gyun;Yoon, Jun-Bo;Euisik Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.232-238
    • /
    • 2001
  • A new DNA purification chip is proposed and fabricated for the sample preparation of Nucleic Acid (NA) probe assay. The proposed DNA purification chip is fabricated using photosensitive glass substrate and polydimethylsiloxane (PDMS) cover fixture. We have successfully captured and eluted the DNA using the fabricated photosensitive glass chip. The fabricated DNA purification chip showed a binding capacity of $15ng/\textrm{cm}^2$and a minimum extractable input concentration of $100copies/200\muL$. The proposed DNA purification chip can be applied for low-cost, disposable sample preparation of NA probe assays.

  • PDF

Electron Microscopy for the Morphological Characterization of Nanocellulose Materials (전자현미경을 이용한 나노셀룰로오스 물질의 형태학적 특성 분석 연구)

  • Kwon, Ohkyung;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.5-18
    • /
    • 2016
  • Electron microscopy is an important investigation and analytical method for the morphological characterization of various cellulosic materials, such as micro-crystalline cellulose (MCC), microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC), and cellulose nanocrystals (CNC). However, more accurate morphological analysis requires high-quality micrographs acquired from the proper use of an electron microscope and associated sample preparation methods. Understanding the interaction of electron and matter as well as the importance of sample preparation methods, including drying and staining methods, enables the production of high quality images with adequate information on the nanocellulosic materials. This paper provides a brief overview of the micro and nano structural analysis of cellulose, as investigated using transmission and scanning electron microscopy.

Optimization of TEM Sample Preparation for the Microstructural Analysis of Nitride Semiconductors (질화물 반도체의 미세구조 분석을 위한 최적의 TEM 시편 준비법)

  • Cho, Hyung-Koun;Kim, Dong-Chan
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.598-605
    • /
    • 2003
  • The optimized conditions for the cross-sectional TEM sample preparation using tripod polisher and ion-beam miller was confirmed by AFM and TEM. For the TEM observation of interfaces including InGaN layers like InGaN/GaN MQW structures, the sample preparation by the only tripod polishing was useful due to the reduction of artifacts. On the other hand, in case of the thick nitride films like ELO, PE, and superlattice, both tripod polishing and controlled ion-beam milling were required to improve the reproducibility. As a result, the ion-beam milling with the $60^{\circ}$modulation showed the minimum height difference between film and sapphire interface and the ion-beam milling of the $80^{\circ}$modulation showed the broad observable width.