• Title/Summary/Keyword: Salt-tolerance

Search Result 439, Processing Time 0.025 seconds

Research of the West Coasts` Plant Community in Korea ( I ) (한국 서해안 해변식물 군락의 연구 (제 1 보))

  • 홍원식
    • Journal of Plant Biology
    • /
    • v.1 no.1
    • /
    • pp.17-24
    • /
    • 1958
  • The author investigated the plant sociological studies on the flora of Inchon districts coast area. (It contains also province of Buchun, Kumpo, and Hwasung, the island of Kanghwa.) The scenery of the west coast in Korea is very curious, because the soil in this area contains comapratively large amount of mud and small sand. Some parts of this area is covered with only mud, and the area between the line of high tije and line of low tide is very vast. When a low tide was appearel, there were vast moddel places appeared about 10 km in length. The author could distinguish $\varepsilon$ different types of communties in this zone. (1) Suaeda jatonica community (2) Statice japonica community (3) Scirtus triqueier community (4) Zoy_ia community (5) Phragmites community (6) Carex Pumilla community (7) Atriolex subsodata community (8) Rosa rugasa community (1), (2), (3), (4) communities can grow under the high tide. (When the high tide comes they soaked in the sea water.) (1) Suaeda community is the most popular type of the Yellow sea. It is very wonderful scene that the vast area (the length of 10 km) is covered with this Suaeda, and it looks like to be painted with blood. (2) Staice (3) Scirpus (4) Zoysia community is can fully maintain their glorious life in the sea water. It is due to the this plants tolerance of salt. (1), (2), (3), (4) communities are very strong to the tolerance of salt, especially the Suaeda is remarkable. The structure and some sucession I trend of each community were studied in detail and the mutual relations among the communites were also concluded.

  • PDF

Development and Characterization of EMS-induced Mutants with Enhanced Salt Tolerance in Silage Maize (EMS 유도 내염성 증진 사료용 옥수수 돌연변이체 선발 및 특성 분석)

  • Cho, Chuloh;Kim, Kyung Hwa;Seo, Mi-Suk;Choi, Man-Soo;Chun, Jaebuhm;Jin, Mina;Kim, Dool-Yi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.406-415
    • /
    • 2020
  • Maize (Zea mays L.) is one of the most valuable agricultural crops and is grown under a wide spectrum of environmental conditions. However, maize is moderately sensitive to salt stress, and soil salinity is a serious threat to its production worldwide. In this study, we used ethyl methane sulfonate (EMS) to generate salt-tolerant silage maize mutants. We screened salt-tolerant lines from 203 M3 mutant populations by evaluating the morphological phenotype after salt stress treatment and selected the 140ES91 line. The 140ES91 mutant showed improved plant growth as well as higher proline content and leaf photosynthetic capacity compared with those of wild-type plants under salt stress conditions. Using whole-genome re-sequencing analysis, 1,103 single nucleotide polymorphisms and 71 insertions or deletions were identified as common variants between KS140 and 140ES91 in comparison with the reference genome B73. Furthermore, the expression patterns of three genes, which are involved in salt stress responses, were increased in the 140ES91 mutant under salt stress. Taken together, the mutant line identified in our study could be used as an improved breeding material for transferring salt tolerance traits in maize varieties.

Salt-induced Differential Gene Expression in Italian Ryegrass (Lolium multiflorum Lam.) Revealed by Annealing Control Primer Based GeneFishing approach

  • Lee, Ki-Won;Lee, Sang-Hoon;Choi, Gi Jun;Ji, Hee Jung;Hwang, Tae Young;Kim, Won Ho;Rahman, Md. Atikur
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.3
    • /
    • pp.231-236
    • /
    • 2017
  • Salt stress is one of the most limiting factors that reduce plant growth, development and yield. However, identification of salt-inducible genes is an initial step for understanding the adaptive response of plants to salt stress. In this study, we used an annealing control primer (ACP) based GeneFishing technique to identify differentially expressed genes (DEGs) in Italian ryegrass seedlings under salt stress. Ten-day-old seedlings were exposed to 100 mM NaCl for 6 h. Using 60 ACPs, a total 8 up-regulated genes were identified and sequenced. We identified several promising genes encoding alpha-glactosidase b, light harvesting chlorophyll a/b binding protein, metallothionein-like protein 3B-like, translation factor SUI, translation initiation factor eIF1, glyceraldehyde-3-phosphate dehydrogenase 2 and elongation factor 1-alpha. These genes were mostly involved in plant development, signaling, ROS detoxification and salt acclimation. However, this study provides new molecular information of several genes to understand the salt stress response. These genes would be useful for the enhancement of salt stress tolerance in plants.

Protein Profiles in Response to Salt Stress in Seedling of Salt Tolerant Rice Mutants

  • Song, Jae Young;Kim, Dong Sub;Lee, Myung-Chul;Lee, Kyung Jun;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun;Lee, Young-Keun;Kang, Si-Yong
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • Proteomic analysis was performed in order to identify proteomic changes by salt stress between the Japonica cv. Donganbyeo (WT) and two salt-tolerant (ST) mutant lines by using the SDS-PAGE and 2-DE. Two salt tolerant rice mutant lines, ST-87 and ST-301, were selected by in vitro mutagenesis with gamma-ray. Three-week-old seedlings were treated with 171 mM NaCl for 7 days. In the SDS-PAGE, three proteins with molecular weights of 27, 46 and 58 kDa were highly increased under salt treatment. Total proteins from shoots of both WT and ST-lines were separated by two-dimensional gel electrophoresis. In 2-DE, 201, 226, 217 and 213 protein spots were detected in the untreated-or treated-WT and untreated- or treated-ST-87, respectively. Of theses, 17 and 10 protein spots were up- and down-regulated under salt stress in the WT, respectively. While, 16 and 8 protein spots were up- and down-regulated under salt stress in the ST-87, respectively, compared with the untreated plants. High intensity or de novo synthesized proteins were analyzed by MALDI-TOF/MS analysis.

Fungal Microbial Community Profiles of Meju, Solar Salt, and Doenjang Using Pyrosequencing (Pyrosequencing을 이용한 메주, 천일염, 된장의 곰팡이 군집 분석)

  • Lee, Limgi;Heo, Sojeong;Jeong, Do-Won
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.354-358
    • /
    • 2019
  • In order to evaluate the migration of fungi into doenjang from its materials, meju and solar salt, microbial communities were analyzed using pyrosequencing. Dominant fungi of meju were Botrytis spp. (57.94%) and Dothiorella samentorum (24.08%). Unidentified fungal species (37.53%), unassigned species (32.60%) and several fungal species of small portion were identified in solar salt. In doenjang, Candida versatilis were predominantly detected (92.62%). Non-halophilic mold were dominantly identified from meju (low-salt fermented soybean), while halophilic bacteria and archaea for solar salt and salt-tolerance fungi such as C. versatilis for doenjang (high-salt fermented soybean) were frequently detected. These results implied that most predominant fungal species might not be migrated from meju and/or solar salt into doenjang.

Studies on the tolerance of Halophyte Arabis stelleri under heavy metals and Salt stress condition (염생식물 섬갯장대(Arabis stelleri var. japonica)의 중금속 및 고염 농도 스트레스 상태에서 내성 연구)

  • Kim, Donggiun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.373-378
    • /
    • 2019
  • In the marine area, the salt concentration in the soil increases, and the inland heavy metal pollution increases the damage of plants. In the inland industrial development area, researches on the genetic resources of plants together with the heavy metal accumulation of Co, Ni, Zn, and so on are required. Both of these problems have caused scientists to work hard to find plants that are likely to cause stress in plant roots. In this study, seeds of Arabis stelleri var. japonica collected near the shore were used for germination. The growth and development and tolerance of both Arabis and Arabidopsis seeds were investigated under laboratory culture conditions. As a result, Arabis showed resistance about 3 times in 250 mM nickle and cobalt, and more than 4 times in 1 mM zinc when compared to Arabidopsis. The tolerance of Arabis to Na salts increased by 20% or more at 50 mM concentration and Arabis was resistant to heavy metals and salt concentration. The accumulation of Na ions in the body was measured as a preparation for studying the intracellular mechanism. As a result, it showed a further decrease in resistance to ground water roots. It is considered that the activity of the exporting gene is important rather than the mechanism of accumulation.

Bile Salts Degradation and Cholesterol Assimilation Ability of Pediococcus pentosaceus MLK67 Isolated from Mustard Leaf Kimchi (갓김치에서 분리된 Pediococcus pentosaceus MLK67의 담즙산 분해능 및 콜레스테롤 동화능)

  • Lim, Sung-Mee
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.231-240
    • /
    • 2011
  • The objective of this study was to evaluate the acid and bile tolerance, bile salt hydrolase (BSH) activity, and cholesterol assimilation ability of lactic acid bacteria isolated from mustard leaf kimchi. MLK11, MLK22, MLK27, MLK41, and MLK67 were relatively acid- and bile-tolerant strains, with more than $10^5$ CFU/ml after incubation in simulated gastric juice and intestinal fluid, while MLK53 was the most sensitive strain to acid and bile. Strains MLK22 and MLK67 deconjugated the highest level of sodium glycocholate with more than 3.5 mM of cholic acid released, while deconjugation was lowest by strains MLK13 and MLK41 which released only 1.35 mM and 1.16 mM, respectively. Specially, strains MLK22 and MLK67 showed higher deconjugation of sodium glycocholate compared to sodium taurocholate and conjugated bile mixture. Although strains MLK22 and MLK67 exhibited maximal BSH activity at the stationary phase, MLK22 had somewhat higher total BSH activity compared to MLK67 towards both sodium glycocholate and sodium taurocholate. Meanwhile, cholesterol removal varied among tested strains (p<0.05) and ranged from 5.22 to 39.16 ${\mu}g$/ml. Especially, MLK67 strain assimilated the highest level of cholesterol in media supplemented with 0.3% oxgall, cholic acid, and taurocholic acid (p<0.05). According to physiological and biological characteristics, pattern of carbohydrate fermentation, and 16S rDNA sequence, strain MLK67 that may be considered as probiotic strain due to acid and bile tolerance and cholesterol-lowering effects was identified as Pediococcus pentosaceus MLK67.

Effects of Sodium Chloride Treatment on Seed Germination and Seedling Growth of Italian Ryegrass Cultivars (이탈리안 라이그라스 품종별 NaCl 처리가 발아 및 초기생육에 미치는 영향)

  • Lee, Sang-Hoon;Choi, Gi Jun;Lee, Dong-Gi;Mun, Jin-Yong;Kim, Ki-Yong;Ji, Hee Jung;Park, Hyung Soo;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.2
    • /
    • pp.108-113
    • /
    • 2014
  • This study was conducted to evaluate the performance of Italian ryegrass cultivars for salt tolerance under in vitro condition. Italian ryegrass cultivars such as Greenfarm, Florida80, Kowinearly, and Hwasan101 were tested for their tolerance to various sodium chloride levels (0, 50, 150, 250, and 350 mM). The seed germination, growth, and activities of antioxidant enzymes were investigated under salt treatment. Physiological traits such as seed germination percentage, germination period, shoot and root length, and dry weight were suppressed under entire salt stress conditions. The results indicated that the highest germination percentage and shoot and root length were recorded at normal conditions. Increased sodium chloride levels caused a significant reduction in the seed germination and growth rate. Among the four tested cultivars, Italian ryegrass 'Hwasan101' could be considered as salt tolerant owing to its higher germination percentage, better seedling growth and antioxidant activities under salinity stress, whereas Greenfarm cultivar was more sensitive. The selection of Italian ryegrass cultivars for greater tolerance to saline environment would allow greater productivity from large saline lands.

Evaluation of Salt Tolerance of Three Foliage Plant as affected by Salinity Concentration in Indoor Ornamental Hydroculture (실내 관상용 물재배에서 염분농도에 따른 3가지 관엽식물의 내염성 평가)

  • Jin Hee Ju;Sun Young Park;Yong Han Yoon
    • Journal of Environmental Science International
    • /
    • v.33 no.4
    • /
    • pp.257-268
    • /
    • 2024
  • This study investigated the growth characteristics of Euonymus japonicus, Hedera helix, and Peperomia puteolata treated with different calcium chloride (CaCl2) concentrations to evaluate salt tolerance limits in hydroculture cultivation. Six concentrations of CaCl2 (0, 1, 2, 5, 10, and 15 g·L-1 referred to as Cont., C1, C2, C5, C10, and C15) were applied to solution - grown plant species. The survival rate, growth index, plant height, plant width, leaf width, leaf length, number of leaves, and relative chlorophyll contents were measured at monthly intervals. Euonymus japonicus, Hedera helix, and Peperomia puteolata survived up to C2, C5, and C10 at each CaCl2 concentration. The Euonymus japonicus was higher in the C1 treatment than in the Cont. for most growth characteristics. Hedera helix had the highest leaf width, leaf length, and number of leaves in the Cont., a significant difference was observed compared with the C1 treatment. The chlorophyll content did not differ significantly between the C5 and Cont. treatments. The leaf width and length of Peperomia puteolata were greater in the C2 and C1 treatments than in the Cont., whereas the number of leaves and chlorophyll content were the highest in C5. Dry weight analysis revealed that Euonymus japonicus, Hedera helix, and Peperomia puteolata were the lowest in the Cont. treatments. Euonymus japonicus was 74% in C15, and Hedera helix, and Peperomia puteolata were analyzed at approximately 37%- 50% and 9%-14%, respectively, regardless of the concentration in the CaCl2 treatment groups. In indoor hydroponic cultivation, the salt tolerance limit concentrations of Euonymus japonicus, Hedera helix, and Peperomia puteolata are 2, 5, and 10 g·L-1, respectively, indicating that hydroculture management techniques should be applied at higher concentrations.

Expressing the Tyrosine Phosphatase (CaTPP1) Gene from Capsicum annuum in Tobacco Enhances Cold and Drought Tolerances

  • Hwang, Eul-Won;Park, Soo-Chul;Jeong, Mi-Jeong;Byun, Myung-Ok;Kwon, Hawk-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.50-56
    • /
    • 2008
  • As one way to approach to cold defense mechanism in plants, we previously identified the gene for protein-tyrosine phosphatase (CaTPP1) from hot pepper (Capsicum annuum) using cDNA microarray analysis coupled with Northern blot analysis. We showed that the CaTPP1 gene was strongly induced by cold, drought, salt and ABA stresses. The CaTPP1 gene was engineered under control of CaMV 35S promoter for constitutive expression in transgenic tobacco plants by Agrobacterium-mediated transformation. The resulting CaTPP1 transgenic tobacco plants showed significantly increased cold stress resistance. It also appeared that some of the transgenic tobacco plants showed increased drought tolerance. The CaTPP1 transgenic plants showed no visible phenotypic alteration compared to wild type plants. These results showed the involvement of protein tyrosine phosphatase in tolerance of abiotic stresses including cold and drought stress.