Browse > Article

Bile Salts Degradation and Cholesterol Assimilation Ability of Pediococcus pentosaceus MLK67 Isolated from Mustard Leaf Kimchi  

Lim, Sung-Mee (Department of Food Science & Technology, Tongmyong University)
Publication Information
Korean Journal of Microbiology / v.47, no.3, 2011 , pp. 231-240 More about this Journal
Abstract
The objective of this study was to evaluate the acid and bile tolerance, bile salt hydrolase (BSH) activity, and cholesterol assimilation ability of lactic acid bacteria isolated from mustard leaf kimchi. MLK11, MLK22, MLK27, MLK41, and MLK67 were relatively acid- and bile-tolerant strains, with more than $10^5$ CFU/ml after incubation in simulated gastric juice and intestinal fluid, while MLK53 was the most sensitive strain to acid and bile. Strains MLK22 and MLK67 deconjugated the highest level of sodium glycocholate with more than 3.5 mM of cholic acid released, while deconjugation was lowest by strains MLK13 and MLK41 which released only 1.35 mM and 1.16 mM, respectively. Specially, strains MLK22 and MLK67 showed higher deconjugation of sodium glycocholate compared to sodium taurocholate and conjugated bile mixture. Although strains MLK22 and MLK67 exhibited maximal BSH activity at the stationary phase, MLK22 had somewhat higher total BSH activity compared to MLK67 towards both sodium glycocholate and sodium taurocholate. Meanwhile, cholesterol removal varied among tested strains (p<0.05) and ranged from 5.22 to 39.16 ${\mu}g$/ml. Especially, MLK67 strain assimilated the highest level of cholesterol in media supplemented with 0.3% oxgall, cholic acid, and taurocholic acid (p<0.05). According to physiological and biological characteristics, pattern of carbohydrate fermentation, and 16S rDNA sequence, strain MLK67 that may be considered as probiotic strain due to acid and bile tolerance and cholesterol-lowering effects was identified as Pediococcus pentosaceus MLK67.
Keywords
Pediococcus pentosaceus; acid and bile tolerance; bile salt deconjugation; bile salt hydrolase; cholesterol assimilation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Akalin, A.S., S. Gonc, and S. Duzel. 1997. Influence of yogurt and acidophilus yogurt on serum cholesterol levels in mice. J. Dairy Sci. 80, 2721-2725.   DOI   ScienceOn
2 Alvarez-Ordonez, A., A. Fernandez, A. Bernardo, and M. Lopez. 2010. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures. Food Microbiol. 27, 44-49.   DOI   ScienceOn
3 Brown, M.S. and J.L. Goldstein. 1984. How LDL receptors influence cholesterol and atherosclerosis. Sci. Am. 251, 52-60.
4 Corcoran, B.M., C. Stanton, G.F. Fitzgerald, and R.P. Ross. 2005. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 71, 3060-3067.   DOI   ScienceOn
5 Corzo, G. and S.E. Gilliland. 1999. Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. J. Dairy Sci. 82, 472-480.   DOI   ScienceOn
6 Cotter, P.D. and C. Hill. 2003. Surviving the acid test: Responses of Gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67, 429-453.   DOI   ScienceOn
7 Dambekodi, P.C. and S.E. Gilliland. 1998. Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J. Dairy Sci. 81, 1818-1824.   DOI   ScienceOn
8 De Rodas, B.Z., S.E. Gilliland, and C.V. Maxwell. 1996. Hypocholesterolemic action of Lactobacillus acidophilus ATCC 43121 and calcium in swine with hypercholesterolemia induced by diet. J. Dairy Sci. 79, 2121-2128.   DOI   ScienceOn
9 De Smet, I., L. van Hoorde, M. De Saeyer, M. Vande Woestyne, and W. Verstraete. 1994. In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity. Microb. Ecol. Health Dis. 7, 315-329.   DOI   ScienceOn
10 Elkins, C.A. and D.C. Savage. 1998. Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100. J. Bacteriol. 180, 4344-4349.
11 Erkelens, D.W. 1990. Combination drug theraphy with HMG CoA reductase inhibitors and bile acid sequestrants for hypercholesterolemia. Cardiology 77, 33-38.   DOI   ScienceOn
12 Erkkilä, S. and E. Petäjä. 2000. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55, 297-300.   DOI   ScienceOn
13 Fernandes, C.F., K.M. Shahani, and M.A. Amer. 1987. Therapeutic role of dietary lactoabilli and lactobacillic fermented dairy products. FEMS Microbiol. Rev. 46, 343-356.   DOI   ScienceOn
14 Gilliland, S.E. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Micriobol. Rev. 87, 175-188.   DOI
15 Gilliland, S.E. and M.L. Speck. 1977. Deconjugation of bile acids by intestinal lactobacilli. Appl. Environ. Microbiol. 33, 15-18.
16 Hosono, U.A. 1999. Bile tolerance, taurocholate deconjugation and binding of cholesterol by Lactobacillus gasseri strains. J. Dairy Sci. 82, 243-248.   DOI   ScienceOn
17 Kitahara, K. 1986. Pediococcus, pp. 513-515. Bergy's Manual of Determinative Bacteriology. In S.T. Cowan, J.G. Holt, J. Liston, R.G.E. Murray, C.F. Niven, A.W. Ravin, and R.Y. Stanier. (8th eds.) William & Wilkins, Baltimore, MD, USA.
18 Irwin, J.L., C.G. Johnson, and J. Kopalo. 1944. A photometric method of the determination of cholates in bile and blood. J. Biol. Chem. 153, 439-457.
19 Jonganurakkun, B., Q. Wang, S.H. Xu, Y. Tada, K. Minamida, D. Yasokawa, M. Sugi, H. Hara, and K. Asano. 2008. Pediococcus pentosaceus NB-17 for probiotic use. J. Biosci. Bioeng. 106, 69-73.   DOI   ScienceOn
20 Kim, S.J., S.Y. Cho, S.H. Kim, O.J. Song, I.S. Shin, D.S. Cha, and H.J. Park. 2008. Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC43121. LWT. 41, 493-500.   DOI   ScienceOn
21 Klaver, F.A.M. and R. van der Meer. 1993. The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile-salt deconjugating activity. Appl. Environ. Microbiol. 59, 1120-1124.
22 Lim, S.M. and D.S. Im. 2009. Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. J. Microbiol. Biotechnol. 19, 178-186.   DOI
23 Liong, M.T. and N.P. Shah. 2005. Acid and bile tolerance and cholesterol removal ability of Lactobacilli strains. J. Dairy Sci. 88, 55-66.   DOI   ScienceOn
24 Lora, K.R., K.L. Morse, G.E. Gonzalez-Kruger, and J.A. Driskell. 2007. High saturated fat and cholesterol intakes and abnormal plasma lipid concentrations observed in a group of 4- to 8-year-old children of Latino immigrants in rural Nebraska. Nutr. Res. 27, 483-491.   DOI   ScienceOn
25 Lundeen, S. and D.C. Savage. 1990. Characterization and purification of bile salt hydrdolase from Lactobacillus sp. Strain 100-100. J. Bacteriol. 172, 4171-4177.   DOI
26 Lye, H.S., G.R. Rahmat-Ali, and M.T. Liong. 2010. Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int. Dairy J. 20, 169-175.   DOI   ScienceOn
27 Moser, S.A. and D.C. Savage. 2001. Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Appl. Environ. Microbiol. 67, 3476-3480.   DOI   ScienceOn
28 Pereira, D.I.A. and G.R. Gibson. 2002. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl. Envrion. Microbiol. 68, 4689-4693.   DOI   ScienceOn
29 Nguyen, T.D.T, J.H. Kang, and M.S. Lee. 2007. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int. J. Food Microbiol. 113, 358-361.   DOI   ScienceOn
30 Noh, D.O., S.H. Kim, and S.E. Gilliland. 1997. Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121. J. Dairy Sci. 80, 3107-3113.   DOI   ScienceOn
31 Raghavendra, P., T.S. Rao, and P.M. Halami. 2010. Evaluation of beneficial attributes for phytate-degrading Pediococcus pentosaceus CFR R123. Benef. Microbes, 1, 259-264.   DOI
32 Rasic, J.L., I.F. Vujicic, M. Skrinjar, and M. Vulic. 1992. Assimilation of cholesterol by some cultures of lactic acid bacteria and bifidobacteria. Biotechnol. Lett. 14, 39-44.   DOI   ScienceOn
33 Richardson, T. 1978. The hypocholesteremic effect of milk: A review. J. Food Protect. 41, 226-235.   DOI
34 Rudel, L.L. and M.D. Morris. 1973. Determination of cholesterol using o-phthalaldehyde. J. Lipid Res. 14, 364-366.
35 Sanchez, B., C.G. Reyes-Gavilan, and A. Margolles. 2006. The $F_1F_0$-ATPase of Bifidobacterium animalis is involved in bile tolerance, Environ. Microbiol. 8, 1825-1833.   DOI   ScienceOn
36 Sridevi, N., P. Vishwe, and A. Prabhune. 2009. Hypocholestermic effect of bile salt hydrolase from Latobacillus buchneri ATCC4005. Food Res. Int. 42, 516-520.   DOI   ScienceOn
37 Tanaka, H., H. Hashiba, J. Kok, and I. Mierau. 2000. Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization. Appl. Environ. Microbiol. 66, 2502-2512.   DOI   ScienceOn
38 Tannock, G.W., G.M. Bateup, and H.F. Jenkinson. 1997. Effect of sodium taurocholate on the in vitro growth of lactobacilli. Microbiol. Ecol. 33, 163-167.   DOI   ScienceOn
39 Theuwissen, E. and R.P. Mensink. 2008. Water-soluble dietary fibers and cardiovascular disease. Physiol. Behav. 94, 285-282.   DOI   ScienceOn