Bile Salts Degradation and Cholesterol Assimilation Ability of Pediococcus pentosaceus MLK67 Isolated from Mustard Leaf Kimchi

갓김치에서 분리된 Pediococcus pentosaceus MLK67의 담즙산 분해능 및 콜레스테롤 동화능

  • Lim, Sung-Mee (Department of Food Science & Technology, Tongmyong University)
  • 임성미 (동명대학교 식품공학과)
  • Received : 2011.09.01
  • Accepted : 2011.09.22
  • Published : 2011.09.30

Abstract

The objective of this study was to evaluate the acid and bile tolerance, bile salt hydrolase (BSH) activity, and cholesterol assimilation ability of lactic acid bacteria isolated from mustard leaf kimchi. MLK11, MLK22, MLK27, MLK41, and MLK67 were relatively acid- and bile-tolerant strains, with more than $10^5$ CFU/ml after incubation in simulated gastric juice and intestinal fluid, while MLK53 was the most sensitive strain to acid and bile. Strains MLK22 and MLK67 deconjugated the highest level of sodium glycocholate with more than 3.5 mM of cholic acid released, while deconjugation was lowest by strains MLK13 and MLK41 which released only 1.35 mM and 1.16 mM, respectively. Specially, strains MLK22 and MLK67 showed higher deconjugation of sodium glycocholate compared to sodium taurocholate and conjugated bile mixture. Although strains MLK22 and MLK67 exhibited maximal BSH activity at the stationary phase, MLK22 had somewhat higher total BSH activity compared to MLK67 towards both sodium glycocholate and sodium taurocholate. Meanwhile, cholesterol removal varied among tested strains (p<0.05) and ranged from 5.22 to 39.16 ${\mu}g$/ml. Especially, MLK67 strain assimilated the highest level of cholesterol in media supplemented with 0.3% oxgall, cholic acid, and taurocholic acid (p<0.05). According to physiological and biological characteristics, pattern of carbohydrate fermentation, and 16S rDNA sequence, strain MLK67 that may be considered as probiotic strain due to acid and bile tolerance and cholesterol-lowering effects was identified as Pediococcus pentosaceus MLK67.

숙성된 갓김치에서 분리된 유산균을 pH 2.5에서 2시간 반응시킨 후 0.3% oxgall 존재 하에서 3시간 배양시킨 결과 MLK11, MLK22, MLK27, MLK41 및 MLK67 균주들은 $10^5$ CFU/ml 이상의 균수를 유지하여 높은 저항성을 보인 반면, MLK53 균주는 대부분의 균수가 사멸되어 매우 민감한 것으로 나타났다. 담즙산에 대한 내성이 강한 균주들 대부분은 복합 담즙산의 탈포합능이 있었으며, MLK22와 MLK67 균주는 sodium glycocholate로부터 3.5 mM 이상의 cholic acid을 유리시켜 가장 높은 탈포합능을 보인 반면, MLK13과 MLK41은 각각 1.35와 1.16 mM 정도 낮은 양의 cholic acid를 유리시켰다. 특히, MLK22와 MLK67의 탈포합능은 sodium taurocholate 혹은 포합담즙산 혼합물 보다는 sodium glycoholate 존재 하에서 더 높게 나타났다. 게다가 sodium glycocholate와 sodium taurocholate으로부터 MLK22와 MLK67이 생산하는 bile salt hydrolase (BSH)의 활성은 정지기 초기에 최대를 이르렀고 MLK67 보다는 MLK22의 BSH 활성이 다소 높았다. 한편, 실험 균주들의 콜레스테롤 제거능은 5.22-39.16 ${\mu}g$/ml로 균주별 유의적인 차이가 있었으며(p<0.05), 그 중에서 MLK67 균주는 0.3% oxgall, cholic acid 및 taurocholic acid로부터 가장 높은 콜레스테롤 동화능을 나타내었다. 따라서 실험 균주 중 높은 내산성과 내담즙성을 가지며, 담즙산 탈포합능 및 콜레스테롤 동화능이 유의하게 높은 MLK67 균주는 probiotic 균주로서의 가능성이 있는 것으로 간주되어 이를 생화학적 특성과 당분해능 및 염기서열 분석에 의해 동정한 결과 Pediococcus pentosaceus MLK67로 확인되었다.

Keywords

References

  1. Akalin, A.S., S. Gonc, and S. Duzel. 1997. Influence of yogurt and acidophilus yogurt on serum cholesterol levels in mice. J. Dairy Sci. 80, 2721-2725. https://doi.org/10.3168/jds.S0022-0302(97)76233-7
  2. Alvarez-Ordonez, A., A. Fernandez, A. Bernardo, and M. Lopez. 2010. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures. Food Microbiol. 27, 44-49. https://doi.org/10.1016/j.fm.2009.07.015
  3. Brown, M.S. and J.L. Goldstein. 1984. How LDL receptors influence cholesterol and atherosclerosis. Sci. Am. 251, 52-60.
  4. Corcoran, B.M., C. Stanton, G.F. Fitzgerald, and R.P. Ross. 2005. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 71, 3060-3067. https://doi.org/10.1128/AEM.71.6.3060-3067.2005
  5. Corzo, G. and S.E. Gilliland. 1999. Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. J. Dairy Sci. 82, 472-480. https://doi.org/10.3168/jds.S0022-0302(99)75256-2
  6. Cotter, P.D. and C. Hill. 2003. Surviving the acid test: Responses of Gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67, 429-453. https://doi.org/10.1128/MMBR.67.3.429-453.2003
  7. Dambekodi, P.C. and S.E. Gilliland. 1998. Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J. Dairy Sci. 81, 1818-1824. https://doi.org/10.3168/jds.S0022-0302(98)75751-0
  8. De Rodas, B.Z., S.E. Gilliland, and C.V. Maxwell. 1996. Hypocholesterolemic action of Lactobacillus acidophilus ATCC 43121 and calcium in swine with hypercholesterolemia induced by diet. J. Dairy Sci. 79, 2121-2128. https://doi.org/10.3168/jds.S0022-0302(96)76586-4
  9. De Smet, I., L. van Hoorde, M. De Saeyer, M. Vande Woestyne, and W. Verstraete. 1994. In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity. Microb. Ecol. Health Dis. 7, 315-329. https://doi.org/10.3109/08910609409141371
  10. Elkins, C.A. and D.C. Savage. 1998. Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100. J. Bacteriol. 180, 4344-4349.
  11. Erkelens, D.W. 1990. Combination drug theraphy with HMG CoA reductase inhibitors and bile acid sequestrants for hypercholesterolemia. Cardiology 77, 33-38. https://doi.org/10.1159/000174681
  12. Erkkilä, S. and E. Petäjä. 2000. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55, 297-300. https://doi.org/10.1016/S0309-1740(99)00156-4
  13. Fernandes, C.F., K.M. Shahani, and M.A. Amer. 1987. Therapeutic role of dietary lactoabilli and lactobacillic fermented dairy products. FEMS Microbiol. Rev. 46, 343-356. https://doi.org/10.1111/j.1574-6968.1987.tb02471.x
  14. Gilliland, S.E. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Micriobol. Rev. 87, 175-188. https://doi.org/10.1111/j.1574-6968.1990.tb04887.x
  15. Gilliland, S.E. and M.L. Speck. 1977. Deconjugation of bile acids by intestinal lactobacilli. Appl. Environ. Microbiol. 33, 15-18.
  16. Hosono, U.A. 1999. Bile tolerance, taurocholate deconjugation and binding of cholesterol by Lactobacillus gasseri strains. J. Dairy Sci. 82, 243-248. https://doi.org/10.3168/jds.S0022-0302(99)75229-X
  17. Irwin, J.L., C.G. Johnson, and J. Kopalo. 1944. A photometric method of the determination of cholates in bile and blood. J. Biol. Chem. 153, 439-457.
  18. Jonganurakkun, B., Q. Wang, S.H. Xu, Y. Tada, K. Minamida, D. Yasokawa, M. Sugi, H. Hara, and K. Asano. 2008. Pediococcus pentosaceus NB-17 for probiotic use. J. Biosci. Bioeng. 106, 69-73. https://doi.org/10.1263/jbb.106.69
  19. Kim, S.J., S.Y. Cho, S.H. Kim, O.J. Song, I.S. Shin, D.S. Cha, and H.J. Park. 2008. Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC43121. LWT. 41, 493-500. https://doi.org/10.1016/j.lwt.2007.03.025
  20. Kitahara, K. 1986. Pediococcus, pp. 513-515. Bergy's Manual of Determinative Bacteriology. In S.T. Cowan, J.G. Holt, J. Liston, R.G.E. Murray, C.F. Niven, A.W. Ravin, and R.Y. Stanier. (8th eds.) William & Wilkins, Baltimore, MD, USA.
  21. Klaver, F.A.M. and R. van der Meer. 1993. The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile-salt deconjugating activity. Appl. Environ. Microbiol. 59, 1120-1124.
  22. Lim, S.M. and D.S. Im. 2009. Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. J. Microbiol. Biotechnol. 19, 178-186. https://doi.org/10.4014/jmb.0804.269
  23. Liong, M.T. and N.P. Shah. 2005. Acid and bile tolerance and cholesterol removal ability of Lactobacilli strains. J. Dairy Sci. 88, 55-66. https://doi.org/10.3168/jds.S0022-0302(05)72662-X
  24. Lora, K.R., K.L. Morse, G.E. Gonzalez-Kruger, and J.A. Driskell. 2007. High saturated fat and cholesterol intakes and abnormal plasma lipid concentrations observed in a group of 4- to 8-year-old children of Latino immigrants in rural Nebraska. Nutr. Res. 27, 483-491. https://doi.org/10.1016/j.nutres.2007.06.006
  25. Lundeen, S. and D.C. Savage. 1990. Characterization and purification of bile salt hydrdolase from Lactobacillus sp. Strain 100-100. J. Bacteriol. 172, 4171-4177. https://doi.org/10.1128/jb.172.8.4171-4177.1990
  26. Lye, H.S., G.R. Rahmat-Ali, and M.T. Liong. 2010. Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int. Dairy J. 20, 169-175. https://doi.org/10.1016/j.idairyj.2009.10.003
  27. Moser, S.A. and D.C. Savage. 2001. Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Appl. Environ. Microbiol. 67, 3476-3480. https://doi.org/10.1128/AEM.67.8.3476-3480.2001
  28. Nguyen, T.D.T, J.H. Kang, and M.S. Lee. 2007. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int. J. Food Microbiol. 113, 358-361. https://doi.org/10.1016/j.ijfoodmicro.2006.08.015
  29. Noh, D.O., S.H. Kim, and S.E. Gilliland. 1997. Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121. J. Dairy Sci. 80, 3107-3113. https://doi.org/10.3168/jds.S0022-0302(97)76281-7
  30. Pereira, D.I.A. and G.R. Gibson. 2002. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl. Envrion. Microbiol. 68, 4689-4693. https://doi.org/10.1128/AEM.68.9.4689-4693.2002
  31. Raghavendra, P., T.S. Rao, and P.M. Halami. 2010. Evaluation of beneficial attributes for phytate-degrading Pediococcus pentosaceus CFR R123. Benef. Microbes, 1, 259-264. https://doi.org/10.3920/BM2009.0042
  32. Rasic, J.L., I.F. Vujicic, M. Skrinjar, and M. Vulic. 1992. Assimilation of cholesterol by some cultures of lactic acid bacteria and bifidobacteria. Biotechnol. Lett. 14, 39-44. https://doi.org/10.1007/BF01030911
  33. Richardson, T. 1978. The hypocholesteremic effect of milk: A review. J. Food Protect. 41, 226-235. https://doi.org/10.4315/0362-028X-41.3.226
  34. Rudel, L.L. and M.D. Morris. 1973. Determination of cholesterol using o-phthalaldehyde. J. Lipid Res. 14, 364-366.
  35. Sanchez, B., C.G. Reyes-Gavilan, and A. Margolles. 2006. The $F_1F_0$-ATPase of Bifidobacterium animalis is involved in bile tolerance, Environ. Microbiol. 8, 1825-1833. https://doi.org/10.1111/j.1462-2920.2006.01067.x
  36. Sridevi, N., P. Vishwe, and A. Prabhune. 2009. Hypocholestermic effect of bile salt hydrolase from Latobacillus buchneri ATCC4005. Food Res. Int. 42, 516-520. https://doi.org/10.1016/j.foodres.2009.02.016
  37. Tanaka, H., H. Hashiba, J. Kok, and I. Mierau. 2000. Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization. Appl. Environ. Microbiol. 66, 2502-2512. https://doi.org/10.1128/AEM.66.6.2502-2512.2000
  38. Tannock, G.W., G.M. Bateup, and H.F. Jenkinson. 1997. Effect of sodium taurocholate on the in vitro growth of lactobacilli. Microbiol. Ecol. 33, 163-167. https://doi.org/10.1007/s002489900018
  39. Theuwissen, E. and R.P. Mensink. 2008. Water-soluble dietary fibers and cardiovascular disease. Physiol. Behav. 94, 285-282. https://doi.org/10.1016/j.physbeh.2008.01.001