• Title/Summary/Keyword: Salt-resistance

Search Result 595, Processing Time 0.032 seconds

Evaluation on the Performance of Surface Performance Improving Agent for the Deterioration Prevention of Concrete Structures (콘크리트 구조물의 열화방지를 위한 표면 성능 개선제의 성능 평가)

  • Ryu, Gum-Sung;Koh, Kyoung-Taek;Kim, Do-Gyeum;Lee, Jang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.177-186
    • /
    • 2005
  • The latest concrete structure has showed that the deterioration of durability has been increased by the damage from salt, carbonization, freezing & thawing and the others. Therefore, the measures for the concrete which has deteriorated durability have been taken. Among them, it has been often used that surface treatment which cuts off the deterioration factors of durability by protecting the surface of concrete. However, troubles such as fracture and rupture in the repair layer have been reported as time goes by due to the difference between the organic repair material like epoxy and concrete properties. Researchers have been developing the repair material which can cut off the deterioration factors of durability such as $CO_2$ gas, chloride ion and water by making the formation of concrete elaborate through the reaction with calcium ion when the surface improving agent is coated on the concrete. The main ingredient of that is inorganic substance which is the same as the concrete property. This study was evaluated the surface improving agent for permeability, watertightness, air-permeability, chemical resistance and elution resistance. As a result, it has been reported that the surface improving agent improves watertightness and air-permeability by penetration more than 10mm within concrete. Therefore, it is concluded that the surface improving agent developed in this research prevents deterioration of concrete durability when it is coated on the concrete structure.

Alteration of Vascular Reactivity in Cadmium-poisoned Rabbits (카드뮴 중독(中毒)에 의한 이곡혈관운동성(耳穀血管運動性)의 변동(變動))

  • Hong, Ki-Whan;Rhim, Byung-Yong
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.23-31
    • /
    • 1982
  • 1) Experiments were undertaken to elucidate the mechanism which elevates the systemic arterial blood pressure by cadmium (Cd). 2) The mean arterial pressure and peripheral resistance of central ear artery in Cd-poisoned rabbit were significantly increased in comparison with those in control. 3) The vascular pressure response to electrical stimulation in Cd-poisoned group was less than that in control. However, in the former group it showed the supersensitivity to norepinephrine. 4) The response to electrical stimulation was diminished by sodium arachidonate in the ear artery, on the contrary, it was rather enhanced in the vessel of Cd-poisoned group. The responses in both groups were reduced by pretreatment with either $PGE_2\;or\;PGF_{2{\alpha}}$. 5) The response to electrical stimulation was not affected in control, but enhanced in Cd-poisoned group by pretreatment with indomethacin. 6) When the ear artery of control group was perfused with physiological salt solution (PSS) the response to electrical stimulation was not changed by indomethacin, it was much enhanced without affecting on the response to norepinephrine when $K^+-free\;PSS$, was used. These results demonstrate the evidence that the alteration of regulatory mechanism on the vessels was causally related to the elevation of arterial pressure and the increase in peripheral resistance in Cd-poisoned rabbits.

  • PDF

Transport Coefficients and Effect of Corrosion Resistance for SFRC (강섬유 보강 콘크리트의 수송계수 및 부식저항효과)

  • Kim, Byoung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.867-873
    • /
    • 2010
  • This study investigated the corrosion properties of reinforced concrete with the addition of steel fibers. The transport properties of steel fiber-reinforced concrete such as permeable void, absorption by capillary action, water permeability and chloride diffusion were first measured to evaluate the relationship with the corrosion of steel rebar. Test results showed a slight increase on the compressive strength with the addition of steel fibers as well as considerable improvement of penetration resistance to mass transport of harmful materials into concrete. The addition of steel fibers in reinforced concrete accelerated the initiation of steel corrosion contrary to the expected results based on the measured transport properties. The NaCl ponding surface showed the spalling failure due to the corrosion expansion of steel fibers and the cut-surface around the steel rebar showed the localized steel fiber's corrosion. The wet-dry cycling with high chloride ions as well as high temperature seems to induce the increase of salt crystallization on the pores continually and the increased pressure with the steel fiber's corrosion on the pores caused the spalling failure on the exposed surface. The microcracking on the surface therefore accelerated the movement of water, chloride ions and oxygen into the embedded steel rebar. The mechanism affecting corrosion of embedded steel reinforcement with steel fibers in this study are not yet fully understood and require further study comprising of accurate experimental design to isolate the effect of steel fiber's potential mechanism on the corrosion process.

Probiotic Properties and Immunomodulator Evaluation of the Potential Feed Additive Pediococcus acidilactici SRCM102607 (잠재적 사료첨가제로서 Pediococcus acidilactici SRCM102607의 생균제 특성 및 면역활성 효과)

  • Shin, Su-Jin;Ha, Gwangsu;Jeong, Su-Ji;Ryu, Myeong Seon;Kim, Jinwon;Yang, Hee-Jong;Kwak, Mi-Sun;Sung, Moon-Hee;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.896-904
    • /
    • 2020
  • The purpose of this study was to investigate the probiotic characteristics and immune activities of selected lactic acid bacterial (LAB) strains as feed additives in livestock. 301 LAB strains isolated from traditional fermented foods were first assessed for their antibacterial activity potential. Of the 301 isolates, five showed antibacterial activity against five livestock pathogens (Esherichia coli KCCM11234, Listeria monocytogens KCTC3710, Salmonella Typhimurium KCTC1926, Staphylococcus aureus KCCM11593, and Shigella flexneri KCTC2517). The probiotic characteristics of the five selected strains were also investigated by antioxidative activity, hemolysis, bile salt hydrolase, acid resistance and bile tolerance. The SRCM102607 strain was found to have superior probiotic properties and was selected for further experimentation. 16S rRNA gene sequencing showed that SRCM102607 is Pediococcus acidilactici, which was labeled as P. acidilactici SRCM102607 (KCCM 12246P). The survival characteristics of P. acidilactici SRCM102607 in artificial gastrointestinal conditions were assessed under exposed acidic (pH 2.0) and bile (0.5% and 1.0%) conditions. P. acidilactici SRCM102607 was also confirmed to have resistance to various antibiotics, including amikacin, gentamicin, vancomycin, and etc. The TNF-α production by P. acidilactici SRCM102607 was 171.86±4.00 ng/ml. These results show that P. acidilactici RCM102607 has excellent potential for use as a probiotic livestock feed additive.

Sn-Ag-Cu Solder Joint Properties on Plasma Coated Organic Surface Finishes and OSP (플라즈마 유기막과 OSP PCB 표면처리의 Sn-Ag-Cu 솔더 접합 특성 비교)

  • Lee, Tae-Young;Kim, Kyoung-Ho;Bang, Jung-Hwan;Park, Nam-Sun;Kim, Mok-Soon;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.25-29
    • /
    • 2014
  • Plasma organic thin film for PCB surface finish is a potential replacement of the conventional PCB finishes because of environment-friendly process, high corrosion-resistance and long shelf life over 1 year. In this study, solder joint properties of the plasma organic surface finish were estimated and compared with OSP surface finish. The plasma surface finish was deposited by chemical vapor deposition from fluorine-based precursors. The thickness of the plasma organic coating was 20 nm. Sn-3.0Ag-0.5Cu (SAC305) solder was used as solder joint materials. From a salt spray test, the plasma organic coating had higher corrosion resistance than the OSP surface finish. The spreadability of SAC305 on plasma organic coating was higher than that on OSP surface finish. SEM and TEM micrographs showed that the interfacial microstructure of the plasma surface finish sample were similar to that of the OSP sample. Solder joint strength of the plasma finish sample was also similar to that of the OSP finished sample.

Thermal Inactivation of Sodium-Habituated Staphylococcus aureus in Ready-to-Heat Sauces

  • Park, Ahreum;Lee, Jinhee;Jeong, Sook-Jin;Hwang, In-Gyun;Lee, Soon-Ho;Cho, Joon-Il;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.32 no.6
    • /
    • pp.713-717
    • /
    • 2012
  • The objective of this study was to evaluate the effect of sodium habituation on thermal resistance of Staphylococcus aureus in various ready-to-heat (RTH) sauces. The strain mixture of S. aureus strains KACC10768, KACC10778, KACC11596, KACC13236 and NCCP10862 was habituated up to 9% of NaCl. The inocula of NaCl-habituated and non-habituated S. aureus were inoculated in 5 g portions of pork cutlet, meat and Carbonara sauces at 7 Log CFU/g, and the samples were vortexed vigorously. The inoculated samples were then exposed to 60 and $70^{\circ}C$ in a water-bath, and survivals of total bacteria and S. aureus were enumerated on tryptic soy agar and mannitol salt agar, respectively, every 30 min for 120 min. At 60oC, the cell counts of total bacteria and the significant difference in survivals between sodium-habituated and non-habituated S. aureus were observed only in the Carbonara sauce; the tailing effect, which is the period of no reduction of bacterial cell counts, was observed in pork cutlet, meat and Carbonara sauces subjected to $60^{\circ}C$. At $70^{\circ}C$, total bacterial populations and sodium-habituated and non-habituated S. aureus cell counts in meat and Carbonara sauce also significantly decreased (p<0.05) after 30 min of heat treatment, followed by the obvious tailing effect. Sodium-habituated S. aureus cell counts in meat and Carbonara sauces were higher (p<0.05) than those of non-habituated S. aureus at $70^{\circ}C$. The results indicate that sodium habituation of S. aureus cells may increase the thermal resistance of the pathogen in RTH sauces; moreover, heating RTH sauces for a short time before serving may not sufficiently decrease the cell counts of S. aureus, particularly for sodium-habituated strain.

Induced Systemic Tolerance to Multiple Stresses Including Biotic and Abiotic Factors by Rhizobacteria (근권미생물에 의한 식물의 생물·환경적 복합 스트레스 내성 유도)

  • Yoo, Sung-Je;Sang, Mee Kyung
    • Research in Plant Disease
    • /
    • v.23 no.2
    • /
    • pp.99-113
    • /
    • 2017
  • Recently, global warming and drastic climate change are the greatest threat to the world. The climate change can affect plant productivity by reducing plant adaptation to diverse environments including frequent high temperature; worsen drought condition and increased pathogen transmission and infection. Plants have to survive in this condition with a variety of biotic (pathogen/pest attack) and abiotic stress (salt, high/low temperature, drought). Plants can interact with beneficial microbes including plant growth-promoting rhizobacteria, which help plant mitigate biotic and abiotic stress. This overview presents that rhizobacteria plays an important role in induced systemic resistance (ISR) to biotic stress or induced systemic tolerance (IST) to abiotic stress condition; bacterial determinants related to ISR and/or IST. In addition, we describe effects of rhizobacteria on defense/tolerance related signal pathway in plants. We also review recent information including plant resistance or tolerance against multiple stresses ($biotic{\times}abiotic$). We desire that this review contribute to expand understanding and knowledge on the microbial application in a constantly varying agroecosystem, and suggest beneficial microbes as one of alternative environment-friendly application to alleviate multiple stresses.

Investigation on the Heating Patterns Depending on the Packaging Materials During Microwave Cooking (포장 소재에 따른 전자레인지 가열 조리 패턴 조사)

  • Lee, Hwa Shin;Cho, Ah Reum;Moon, Sang Kwon;Yoon, Chan Suk;Lee, Keun Taik
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • Heating patterns depending on the packaging materials were examined in order to investigate the causes of thermal deformation of packages used for ready-to-eat foods for microwave heating due to the non-uniformity of microwaves. Physical properties including tensile strength, heat-resistance and elongation of four different CPP grades were compared. High retortable CPP had higher sealing strength and heat resistance compared to the conventional CPPs. All CPP samples tested were proved to have melting temperatures around $160^{\circ}C$. However, they were all thermally deformed by microwave heating due to a limited penetration of microwave and non-uniform heating within the spicy sauce of high viscosity contained high salt, especially on the above the filling line and sealing edge of pouches. When the laminated stand-up pouches composed of G-PET/PET/PET/CPP and G-PET/PET/NY/CPP were retorted and microwaved, significant deformations were noticed in both samples after retorting. Besides, pouches contained titanium dioxide showed more intense thermal deformation than the control. When the $10{\mu}m$ aluminium foil was affixed on the pouch, small thermal deformation was observed only in the bottom layer. More studies are required to prevent the thermal deformation of packaging materials used for RTE foods during microwave heating by developing the technologies to increase the thermal stability of CPP layer and the modification of packaging design to modify the microwave access into the package.

  • PDF

Efficacy of Wood Preservatives Formulated with Okara and Its Microscopic Analysis (두부비지 방부제의 방부효능 및 현미경적 분석)

  • Kim, Ho-Yong;Choi, In-Gyu;Ahn, Sye Hee;Oh, Sei Chang;Youn, Young Ho;Yang, In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.245-254
    • /
    • 2009
  • As a substitute for CCA, which is inhibited due to its environmental pollution and human harmfulness, and CuAz and ACQ with a high cost, okara-based wood preservatives were formulated with okara hydrolyzates using copper sulfate and/or borax as a metal salt. The efficacy of the preservatives and X-ray microanalysis of wood specimens treated with the preservatives were examined to confirm the potential of the okara-based wood preservatives. Most of the preservatives showed excellent decay resistance against brown-rot fungi, Postia placenta and Gloeophyllum trabeum. The efficacy was improved when the acid concentration and temperature used for the hydrolysis of okara increased. In addition, when borax was added into copper sulfate/okara hydrolyzates preservative formulations, any decay was not found in the specimens. From the microscopic observation of the specimens treated with okara-based wood preservatives, it seems that okara is contributed to the fixing of metal salts in wood blocks. Therefore, it is speculated that okara-based wood preservatives can effectively protect wood against fungal attack as CuAz, and that the preservatives are sufficient to use as an alternative wood preservative of CCA, ACQ and CuAz.

Durability of concrete using sulfur-modified polymer (개질유황 폴리머를 사용한 콘크리트의 내구성 평가)

  • Hong, Chang Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.205-211
    • /
    • 2015
  • Most of the sulfur is obtained from desulfurization of natural gas and crude oil. In Korea, more than 120 tons of sulfur are produced by refinery, and about 50 % of the produced sulfur is used as a raw material for the production of fertilizer and sulfuric acid. Modified sulfur is manufactured from excessive sulfur that could be used to improve concrete properties, and this study evaluated concrete strength and durability that contains modified sulfur. Flexural and compressive strengths of concrete with sulfur modified polymer were comparable to those of OPC concrete with mixing water at similar temperatures, while the strengths increased a little as mixing water temperature increased. It was also confirmed that the resistance to freeze-thaw damage was more dependent on entrained air characteristics obtained by a proper use of air entraining agent than on the use of sulfur modified polymer. When concrete was immersed in 5 % sulfuric acid, the rate of reduction in compressive strength of OPC concrete was less than 1/4 of the strength reduction of concrete with sulfur modified polymer. Also, the resistance of concrete with sulfur modified polymer to scaling due to the use of de-icing salt was evaluated as Class 1, while that of OPC concrete was evaluated as Class 4, as aggregates were exposed. Accordingly, it is believed that sulfur modified polymer could be effectively used for bridge deck concrete since sulfur modified polymer improves the durability of concrete.