Browse > Article
http://dx.doi.org/10.5423/RPD.2017.23.2.99

Induced Systemic Tolerance to Multiple Stresses Including Biotic and Abiotic Factors by Rhizobacteria  

Yoo, Sung-Je (Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration)
Sang, Mee Kyung (Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration)
Publication Information
Research in Plant Disease / v.23, no.2, 2017 , pp. 99-113 More about this Journal
Abstract
Recently, global warming and drastic climate change are the greatest threat to the world. The climate change can affect plant productivity by reducing plant adaptation to diverse environments including frequent high temperature; worsen drought condition and increased pathogen transmission and infection. Plants have to survive in this condition with a variety of biotic (pathogen/pest attack) and abiotic stress (salt, high/low temperature, drought). Plants can interact with beneficial microbes including plant growth-promoting rhizobacteria, which help plant mitigate biotic and abiotic stress. This overview presents that rhizobacteria plays an important role in induced systemic resistance (ISR) to biotic stress or induced systemic tolerance (IST) to abiotic stress condition; bacterial determinants related to ISR and/or IST. In addition, we describe effects of rhizobacteria on defense/tolerance related signal pathway in plants. We also review recent information including plant resistance or tolerance against multiple stresses ($biotic{\times}abiotic$). We desire that this review contribute to expand understanding and knowledge on the microbial application in a constantly varying agroecosystem, and suggest beneficial microbes as one of alternative environment-friendly application to alleviate multiple stresses.
Keywords
Abiotic stress; Biotic stress; Induced systemic tolerance; Plant growth-promoting rhizobacteria;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Campbell, G. R., Taga, M. E., Mistry, K., Lloret, J., Anderson, P. J., Roth, J. R. and Walker, G. C. 2006. Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of $B_{12}$. Proc. Natl. Acad. Sci. U. S. A. 103: 4634-4639.   DOI
2 Carrillo, P. G., Mardaraz, C., Pitta-Alvarez, S. I. and Giulietti, A. M. 1996. Isolation and selection of biosurfactant-producing bacteria. World J. Microbiol. Biotechnol. 12: 82-84.   DOI
3 Carrillo‐Castaneda, G., Munoz, J. J., Peralta‐Videa, J. R., Gomez, E. and Gardea‐Torresdey, J. L. 2003. Plant growth‐promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J. Plant Nutr. 26: 1801-1814.
4 Carrillo-Castaneda, G., Munoz, J. J., Peralta-Videa, J. R., Gomez, E. and Gardea-Torresdey, J. L. 2005. Modulation of uptake and translocation of iron and copper from root to shoot in common bean by siderophore-producing microorganisms. J. Plant Nutr. 28: 1853-1865.   DOI
5 Chaparro, J. M., Sheflin, A. M., Manter, D. K. and Vivanco, J. M. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils. 48: 489-499.   DOI
6 Chen, H. and Xiong, L. 2005. Pyridoxine is required for postembryonic root development and tolerance to osmotic and oxidative stresses. Plant J. 44: 396-408.   DOI
7 Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J. Y., Lee, Y. H., Cho, B. H., Yang, K. Y., Ryu, C. M. and Kim, Y. C. 2008. 2R,3Rbutanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21: 1067-1075.   DOI
8 Eliasson, L., Bertell, G. and Bolander, E. 1989. Inhibitory action of auxin on root elongation not mediated by ethylene. Plant Physiol. 91: 310-314.   DOI
9 Haggag, W. M. 2007. Colonization of exopolysaccharide-producing Paenibacillus polymyxa on peanut roots for enhancing resistance against crown rot disease. Afr. J. Biotechnol. 6: 1568-1577.
10 Hamayun, M., Khan, S. A., Khan, A. L., Shin, J. H., Ahmad, B., Shin, D. H. and Lee, I. J. 2010. Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J. Agric. Food Chem. 58: 7226-7232.   DOI
11 Hansen, J., Sato, M. and Ruedy, R. 2012. Perception of climate change. Proc. Natl. Acad. Sci. U. S. A. 109: E2415-E2423.   DOI
12 Iavicoli, A., Boutete, E., Buchala, A. and Metraux, J. P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16: 851-858.   DOI
13 Hardoim, P. R., van Overbeek, L. S. and Elsas, J. D. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16: 463-471.   DOI
14 Heil, M. 1999. Systemic acquired resistance: available information and open ecological questions. J. Ecol. 87: 341-346.   DOI
15 Hoffland, E., Pieterse, C. M. J., Bik, P. L. and van Pelt, J. A. 1995. Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Phyisol. Mol. Plant Pathol. 46: 309-320.   DOI
16 Gontia-Mishra, I., Sasidharan, S. and Tiwari, S. 2014. Recent developments in use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnol. Lett. 36: 889-898.   DOI
17 Gozzo, F. and Faoro, F. 2013. Systemic acquired resistance (50 years after discovery): moving from the lab to the field. J. Agric. Food Chem. 61: 12473-12491.   DOI
18 Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. and Greenberg, J. T. 2009. Priming in systemic plant immunity. Science 324: 89-91.   DOI
19 Flemming, H. C. and Wingender, J. 2001. Relevance of microbial extracellular polymeric substances (EPSs)-Part I: structural and ecological aspects. Water Sci. Technol. 43: 1-8.
20 Forni, C., Duca, D. and Glick, B. R. 2016. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil. 410: 335-356.
21 Glick, B. R., Todorovic, B., Czarny, J., Cheng, Z., Duan, J. and Mc- Conkey, B. 2007b. Promotion of plant growth by bacterial ACC deaminase. Crit. Rev. Plant Sci. 26: 227-242.   DOI
22 Fu, Z. Q. and Dong, X. 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64: 839-863.   DOI
23 Glick, B. R. 2006. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS. Microbiol. Lett. 251: 1-7.
24 Glick, B. R., Cheng, Z., Czarny, J. and Duan, J. 2007a. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119: 329-339.   DOI
25 Goel, A. K., Lundberg, D., Torres, M. A., Matthews, R., Akimoto-Tomiyama, C., Farmer, L., Dangl, J. L. and Grant, S. R. 2008. The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants. Mol. Plant-Microbe Interact. 21: 361-370.   DOI
26 Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266.   DOI
27 Yang, J., Kloepper, J. W. and Ryu, C. M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14: 1-4.   DOI
28 Bilski, P., Li, M. Y., Ehrenshaft, M., Daub, M. E. and Chignell, C. F. 2000. Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem. Photobiol. 71: 129-134.   DOI
29 Bogino, P. C., Oliva Mde, L., Sorroche, F. G. and Giordano, W. 2013. The role of bacterial biofilms and surface components in plantbacterial associations. Int. J. Mol. Sci. 14: 15838-15859.   DOI
30 Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. and Somero, G. N. 1982. Living with stress: evolution of osmolyte systems. Science 217: 1214-1222.   DOI
31 Yue, H., Mo, W., Li, C., Zheng, Y. and Li, H. 2007. The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant Soil 297: 139-145.   DOI
32 Yuwono, T., Handayani, D. and Soedarsono, J. 2005. The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aust. J. Agric. Res. 56: 715-721.   DOI
33 Bhattacharyya, P. N. and D. K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327-1350.   DOI
34 Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E., Shi, H. and Pare, P. W. 2008. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol. Plant-Microbe Interact. 6: 737-744.
35 Barriuso, J., Solano, B. R. and Gutierrez Manero, F. J. 2008. Protection against pathogen and salt stress by four plant growthpromoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98: 666-672.   DOI
36 Barth, C., Moeder, W., Klessig, D. F. and Conklin, P. L. 2004. The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol. 134: 1784-1792.   DOI
37 Bashan, Y. and De-Bashan, L. E. 2002. Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 68: 2637-2643.   DOI
38 Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R. and White, L. L. 2014. Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects, Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Changes. Cambridge University Press, Cambridge, UK and New York, NY, USA.
39 Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., Khan, F. A., Khan, F., Chen, Y., Wu, C., Tabassum, M. A., Chun, M. X., Afzal, M., Jan, A., Jan, M. T. and Huang, J. 2015. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ. Sci. Pollut. Res. 22: 4907-4921.   DOI
40 Falardeau, J., Wise, C., Novitsky, L. and Avis, T. J. 2013. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J. Chem. Ecol. 39: 869-878.   DOI
41 Figueiredo, M. V. B., Burity, H. A., Martinez, C. R. and Chanway, C. P. 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. Soil Ecol. 40: 182-188.   DOI
42 Bostock, R. M., Pye, M. F. and Roubtsova, T. V. 2014. Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu. Rev. Phytopathol. 52: 517-549.   DOI
43 Boubakri, H., Gargouri, M., Mliki, A., Brini, F., Chong, J. and Jbara, M. 2016. Vitamins for enhancing plant resistance. Planta 244: 529-543.   DOI
44 Boyer, J. S. 1982. Plant productivity and environment. Science 218: 443-448.   DOI
45 Bakker, P. A. H. M., Pieterse, C. M. J. and van Loon, L. C. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97: 239-243.   DOI
46 Baya, A. M., Boethling, R. S. and Ramos-Cormenzana, A. 1981. Vitamin production in relation to phosphate solubilization by soil bacteria. Soil Biol. Bilchem. 13: 527-531.   DOI
47 Beneduzi, A., Ambrosini, A. and Passaglia, L. M. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35(4 Suppl): 1044-1051.   DOI
48 Bensalim, S., Nowak, J. and Asiedu, S. K. 1998. A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am. J. Potato Res. 75: 145-152.   DOI
49 Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. D. and Whittaker, J. B. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol. 8: 1-16.   DOI
50 Arshad, M., Shaharoona, B. and Mahmood, T. 2008. Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18: 611-620.   DOI
51 Ashraf, M., Hasnain, S., Berge, O. and Mahmood, T. 2004. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol. Fertil. Soils 40: 157.
52 Atkinson, N. J., Lilley, C. J. and Urwin, P. E. 2013. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 162: 2028-2041.   DOI
53 Dimkpa, C., Weinand, T. and Asch, F. 2009. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32: 1682-1694.   DOI
54 Cook, R. J., Thomashow, L. S., Weller, D. M., Fujimoto, D., Mazzola, M., Bangera, G. and Kim, D. S. 1995. Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. U. S. A. 92: 4197-4201.   DOI
55 De Meyer, G., Audenaert, K. and Hofte, M. 1999. Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. Eur. J. Plant Pathol. 105: 513-517.   DOI
56 De Vleesschauwer, D. and Hofte, M. 2009. Rhizobacteria-induced systemic resistance. Adv. Bot. Res. 51: 223-281.
57 Dodd, I. C. and Perez-Alfocea, F. 2012. Microbial amelioration of crop salinity stress. J. Exp. Bot. 63: 3415-3428.   DOI
58 Dodd, I. C., Zinovkina, N. Y., Safronova, V. I. and Belimov, A. A. 2010. Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol. 157: 361-379.   DOI
59 Dodds, P. N. and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11: 539-548.
60 Dong, H. and Beer, S. V. 2000. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90: 801-811.   DOI
61 Egamberdiyeva, D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36: 184-189.   DOI
62 Pierik, R., Sasidharan, R. and Voesenek, L. A. C. J. 2007. Growth control by ethylene: adjusting phenotypes to the environment. J. Plant Growth Regul. 26: 188-200.   DOI
63 Maksimov, I. V., Veselova, S. V., Nuzhnaya, T. V., Sarvarova, E. R. and Khairullin, R. M. 2015. Plant growth-promoting bacteria in regulation of plant resistance to stress factors. Russ. J. Plant Physiol. 62: 715-726.   DOI
64 Pastori, G. M., Kiddle, G., Antoniw, J., Bernard, S., Veljovic-Jovanovic, S., Verrier, P. J., Noctor, G. and Foyer, C. H. 2003. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15: 939-951.   DOI
65 Paul, M. J., Primavesi, L. F., Jhurreea, D. and Zhang, Y. 2008. Trehalose metabolism and signaling. Annu. Rev. Plant Biol. 59: 417-441.   DOI
66 Pieterse, C. M. J., Van Pelt, J. A., Ton, J., Parchmann, S., Mueller, M. J., Buchala, A. J. and Metraux, J. P. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol. Mol. Plant Pathol. 57: 123-134.   DOI
67 Pieterse, C. M., van Wees, S. C., Hoffland, E., van Pelt, J. A. and van Loon, L. C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8: 1225-1237.   DOI
68 Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571-1580.   DOI
69 Niu, D., Wang, X., Wang, Y., Song, X., Wang, J., Guo, J. and Zhao, H. 2016. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway. Biochem. Biophys. Res. Commun. 469: 120-125.   DOI
70 Newman, M. A., Sundelin, T., Nielsen, J. T. and Erbs, G. 2013. MAMP(microbe-associated molecular pattern) triggered immunity in plants. Front. Plant Sci. 4: 139.
71 Okmen, B. and Doehlemann, G. 2014. Inside plant: biotrophic strategies to modulate host immunity and metabolism. Curr. Opin. Plant Biol. 20: 19-25.   DOI
72 Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090.   DOI
73 Pozo, M. J., Van der Ent, S., van Loon, L. C. and Pieterse, C. M. 2008. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol. 180: 511-523.   DOI
74 Prime-A-Plant Group; Conrath, U., Bechers, G. J., Flors, V., Garcia-Agustin, P., Jakab, G. Mauch, F., Newman, M. A., Pieterse, C. M., Poinssot, B. Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L. and Mauch-Mani, B. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19: 1062-1071.   DOI
75 Qurashi, A. W. and Sabri, A. N. 2011. Osmoadaptation and plant growth promotion by salt tolerant bacteria under salt stress. Afr. J. Microbiol. Res. 5: 3546-3554.
76 Raaijmakers, J. M., de Bruijn, I. and de Kock, M. J. 2006. Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol. Plant-Microbe Interact. 19: 699-710.   DOI
77 Rasmussen, S., Barah, P., Suarez-Rodriguez, M. C., Bressendorff, S., Friis, P., Costantino, P., Bones, A. M., Nielsen, H. B. and Mundy, J. 2013. Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol. 161: 1783-1794.   DOI
78 Palacios, O. A., Bashan, Y. and de-Bashan, L. E. 2014. Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria: an overview. Biol. Fertil. Soils 50: 415-432.   DOI
79 Radhakrishnan, R., Khan, A. L. and Lee, I. J. 2013. Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. J. Microbiol. 51: 850-857.   DOI
80 Ramegowda, V. and Senthil-Kumar, M. 2015. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J. Plant Physiol. 176: 47-54.   DOI
81 Roberson, E. B. and Firestone, M. K. 1992. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 58: 1284-1291.
82 Stocker, T. E., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M. 2013. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, NY, USA.
83 Strange, R. N. and Scott, P. R. 2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43: 83-116.   DOI
84 Suarez, R., Wong, A., Ramirez, M., Barraza, A., del Carmen Orozco, M., Cevallos, M. A., Lara, M., Hernandez, G. and Iturriaga, G. 2008. Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol. Plant-Microbe Interact. 21: 958-966.   DOI
85 Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., van Wees, S. C. and Bakker, P. A. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52: 347-375.   DOI
86 Sankari, J. U., Dinakar, S. and Seka, C. 2011. Dual effect of Azospirillum exopolysaccharides (EPS) on the enhancement of plant growth and biocontrol of blast (Pyricularia oryzae) disease in upland rice (var. ASD-19). J. Phytol. 3: 16-19.
87 Saleem, M., Arshad, M., Hussain, S. and Bhatti, A. S. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34: 635-648.   DOI
88 Sanchez, L., Courteaux, B., Hubert, J., Kauffmann, S., Renault, J. H., Clement, C., Baillieul, F. and Dorey, S. 2012. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol. 160: 1630-1641.   DOI
89 Sang, M. K. and Kim, K. D. 2012. The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J. Appl. Microbiol. 113: 383-398.   DOI
90 Shan, L., He, P., Li, J., Heese, A., Peck, S. C., Nürnberger, T., Martin, G. B. and Sheen, J. 2008. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptorsignaling complexes and impede plant immunity. Cell Host Microbe 4: 17-27.   DOI
91 Shintu, P. V. and Jayaram, K. M. 2015. Phosphate solubilising bacteria (Bacillus polymyxa): an effective approach to mitigate drought in tomato (Lycopersicon esculentum Mill.). Tropic. Plant Res. 2: 17-22.
92 Siddiqui, I. A. and Shaukat, S. S. 2003. Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol. Biochem. 35: 1615-1623.   DOI
93 Azpiroz, R., Wu, Y., LoCascio, J. C. and Feldmann, K. A. 1998. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10: 219-230.   DOI
94 Atkinson, N. J. and Urwin, P. E. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63: 3523-3543.   DOI
95 Audenaert, K., Pattery, T., Cornelis, P. and Hofte, M. 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant-Microbe Interact. 15: 1147-1156.   DOI
96 Azami-Sardooei, Z., Franca, S. C., De Vleesschauwer, D. and Hofte, M. 2010. Rivoflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide- fueled resistance response. Physiol. Mol. Plant Pathol. 75: 23-29.   DOI
97 Badri, D. V., Weir, T. L., van der Lelie, D. and Vivanco, J. M. 2009. Rhizosphere chemical dialogues: plant-microbe interactions. Curr. Opin. Biotechnol. 20: 642-650.   DOI
98 Bakker, A. W. and Schippers, B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol. Biochem. 19: 451-457.   DOI
99 Choudhary, D. K., Kasotia, A., Jain, S., Vaishnav, A., Kumari, S., Sharma, K. P. and Varma, A. 2016. Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J. Plant Growth Regul. 35: 276-300.   DOI
100 Cohen, A. C., Travaglia, C. N., Bottini, R. and Piccoli, P. N. 2009. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87: 455-462.   DOI
101 Tarkka, M. T. and Piechulla, B. 2007. Aromatic weapons: truffles attack plants by the production of volatiles. New Phytol. 175: 381-383.   DOI
102 Porcel, R., Zamarreno, Á. M., Garcia-Mina, J. M. and Aroca, R. 2014. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol. 14: 36.   DOI
103 Spaepen, S., Bossuyt, S., Engelen, K., Marchal, K. and Vanderleyden, J. 2014. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxinproducing bacterium Azospirillum brasilense. New Phytol. 201: 850-861.   DOI
104 Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. and Mittler, R. 2014. Abiotic and biotic stress combinations. New Phytol. 203: 32-43.   DOI
105 Timmusk, S., Abd El-Daim, I. A., Copolovici, L., Tanilas, T., Kannaste, A., Behers, L., Nevo, E., Seisenbaeva, G., Stenstrom, E. and Niinemets, U. 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9: e96086.   DOI
106 Timmusk, S. and Wagner, E. G. 1999. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant-Microbe Interact. 11: 951-959.
107 Ton, J., Flors, V. and Mauch-Mani, B. 2009. The multifaceted role of ABA in disease resistance. Trends Plant Sci. 14: 310-317.   DOI
108 Tran, H., Ficke, A., Asiimwe, T., Hofte, M. and Raaijmakers, J. M. 2007. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol. 175: 731-742.   DOI
109 Sang, M. K., Kim, J. D., Kim, B. S. and Kim, K. D. 2011. Root treatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathology 101: 666-678.   DOI
110 Zhang, S., Yang, X., Sun, M., Sun, F., Deng, S. and Dong, H. 2009. Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J. Integr. Plant Biol. 51: 167-174.   DOI
111 Kaushal, M. and Wani, S. P. 2016. Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann. Microbiol. 66: 35-42.   DOI
112 Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329.   DOI
113 Kang, S. M., Radhakrishnan, R., Khan, A. L., Kim, M. J., Park, J. M., Kim, B. R., Shin, D. H. and Lee, I. J. 2014. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol. Biochem. 84: 115-124.   DOI
114 Kariola, T., Brader, G., Helenius, E., Li, J., Heino, P. and Palva, E. T. 2006. Early responsive to dehydration 15, a negative regulator of abscisic acid responses in Arabidopsis. Plant Physiol. 142: 1559-1573.   DOI
115 Kang, I. J., Kim, S. H., Shim, H. K., Seo, M. J., Shin, D. B., Roh, J. H. and Heu, S. 2016b. Incidence of wildfire disease on soybean of Korea during 2014-2015. Res. Plant Dis. 22: 38-43.   DOI
116 Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S., Yamaguchi, I. and Yoshida, S. 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33: 887-898.   DOI
117 Kal, B. S., Lee, N. E. and Park, J. B. 2015. A study of climate change patterns of Korea through the standardization and composite impact analysis of the long-term weather data. J. Korean Soc. Hazard Mitig. 15: 377-383. (In Korean)
118 Kang, B. R., Han, S. H., Kim, C. H. and Kim, Y. C. 2016a. Riboflavinbased BiodoctorTM induced disease resistance against rice blast and bacterial leaf blight diseases. Res. Plant Dis. 22: 202-207.   DOI
119 Mendes, R., Garbeva, P. and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37: 634-663.   DOI
120 Conn, V. M., Walker, A. R. and Franco, C. M. 2008. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21: 208-218.   DOI
121 Abdel-Mawgoud, A. M., Lepine, F. and Deziel, E. 2010. Rhamnolipids: diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 86: 1323-1336.   DOI
122 Ahmad, M., Zahir, Z. A., Asghar, H. N. and Asghar, M. 2011. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 57: 578-589.   DOI
123 Ait Barka, E., Nowak, J. and Clement, C. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl. Environ. Microbiol. 72: 7246-7252.   DOI
124 Alami, Y., Achouak, W., Marol, C. and Heulin, T. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 66: 3393-3398.   DOI
125 Algar, E., Gutierrez-Manero, F. J., Garcia-Villaraco, A., Garcia-Seco, D., Lucas, J. A. and Ramos-Solano, B. 2014. The role of isoflavone metabolism in plant protection depends on the rhizobacterial MAMP that triggers systemic resistance against Xanthomonas axonopodis pv. glycines in Glycine max (L.) Merr. cv. Osumi. Plant Physiol. Biochem. 82: 9-16.   DOI
126 Bray, E. A., Bailey-Serres, J. and Weretilnyk, E. 2000. Responses to abiotic stresses. In: Biochemistry and Molecular Biology of Plants, eds. by W. Gruissem, B. Buchannan and R. Jones, pp. 1158-1249. American Society of Plant Physiologists, Rockville, MD, USA.
127 Lee, S. M., Chung, J. H. and Ryu, C. M. 2015. Augmenting plant immune responses and biological control by microbial determinants. Res. Plant Dis. 21: 161-179. (In Korean)   DOI
128 Meziane, H., van der Sluis, I., van Loon, L. C., Hofte, M. and Bakker, P. A. 2005. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant Pathol. 6: 177-185.   DOI
129 Kloepper, J. W. and Schroth, M. N. 1981. Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71: 1020-1024.   DOI
130 Lee, S. G., Lee, H. J., Kim, S. K., Choi, C. S. and Park, S. T. 2016. Influence of waterlogging period on the growth, physiological responses, and yield of kimchi cabbage. J. Environ. Sci. Int. 25: 535-542. (In Korean)   DOI
131 Liu, F., Xing, S., Ma, H., Du, Z. and Ma, B. 2013. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl. Microbiol. Biotechnol. 97: 9155-9164.   DOI
132 Lucas, J. A., Garcia-Cristobal, J., Bonilla, A., Ramos, B. and Gutierrez- Manero, J. 2014. Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiol. Biochem. 82: 44-53.   DOI
133 Madgwick, J. W., West, J. S., White, R. P., Semenov, M. A., Townsend, J. A., Turner, J. A. and Fitt, B. D. L. 2011. Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. Eur. J. Plant Pathol. 130: 117.   DOI
134 Maksimov, I. V., Abizgil'dina, R. R. and Pusenkova, L. I. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl. Biochem. Microbiol. 47: 333-345.   DOI
135 Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026.   DOI
136 Pandey, P. K., Yadav, S. K., Singh, A., Sarma, B. K., Mishra, A. and Singh, H. B. 2012. Cross-species alleviation of biotic and abiotic stresses by the endophyte Pseudomonas aeruginosa PW09. J. Phytopathol. 160: 532-539.   DOI
137 Rodriguez, R. J., Henson, J., van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y. O. and Redman, R. S. 2008. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2: 404-416.   DOI
138 Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8: 1809-1819.   DOI
139 Ryu, C. M., Hu, C. H., Locy, R. D. and Kloepper, J. W. 2005. Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268: 285-292.   DOI
140 Naseem, H. and Bano, A. 2014. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J. Plant Interact. 9: 689-701.   DOI
141 Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J. and Zhu, J. K. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45: 523-539.   DOI
142 van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol. 119: 243-254.   DOI
143 van Loon, L. C., Bakker, P. A. and Pieterse, C. M. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483.   DOI
144 Varnier, A. L, Sanchez, L., Vatsa, P., Boudesocque, L., Garcia-Brugger, A., Rabenoelina, F., Sorokin, A., Renault, J. H., Kauffmann, S., Pugin, A., Clement, C., Baillieul, F. and Dorey, S. 2009. Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ. 32: 178-193.   DOI
145 Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. and SkZ, A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184: 13-24.   DOI
146 Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C. M. J., van Loon, L. C. and Bakker, P. A. H. M. 2012. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102: 403-412.   DOI
147 Wei, G., Kloepper, J. W. and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Collototrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81: 1508-1512.   DOI
148 Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52(Spec Issue): 487-511.   DOI
149 Khripach, V., Zhabinskii, V. and de Groot, A. 2000. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 86: 441-447.   DOI
150 Keskin, B. C., Sarikaya, A. T., Yüksel, B. and Memon, A. R. 2010. Abscisic acid regulated gene expression in bread wheat (Triticum aestivum L.). Aust. J. Crop Sci. 4: 617-625.
151 Kissoudis, C., van de Wiel, C., Visser, R. G. and van der Linden, G. 2014. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front. Plant Sci. 5: 207.
152 Kiyosue, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. ERD15, a cDNA for a dehydration-induced gene from Arabidopsis thaliana. Plant Physiol. 106: 1707.   DOI
153 Kloepper, J. W. 1983. Effect of seed piece inoculation with plant growth-promoting rhizobacteria on populations of Erwinia carotovora on potato roots and in daughter tubers. Phytopathology 73: 217-219.   DOI
154 Kloepper, J. W. 1991. Development of in vivo assays for prescreening antagonists of Rhizoctonia solani on cotton. Phytopathology 81: 1006-1013.   DOI
155 Miyamoto, E., Watanabe, F., Takenaka, H. and Nakano, Y. 2002. Uptake and physiological function of vitamin $B_{12}$ in a photosynthetic unicellular coccolithophorid alga, Pleurochrysis carterae. Biosci. Biotechnol. Biochem. 66: 195-198.   DOI
156 Nadeem, S. M., Zahir, Z. A., Naveed, M. and Arshad, M. 2007. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can. J. Microbiol. 53: 1141-1149.   DOI