DOI QR코드

DOI QR Code

Induced Systemic Tolerance to Multiple Stresses Including Biotic and Abiotic Factors by Rhizobacteria

근권미생물에 의한 식물의 생물·환경적 복합 스트레스 내성 유도

  • Yoo, Sung-Je (Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration) ;
  • Sang, Mee Kyung (Division of Agricultural Microbiology, National Institute of Agricultural Science, Rural Development Administration)
  • 유성제 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 상미경 (농촌진흥청 국립농업과학원 농업미생물과)
  • Received : 2017.02.10
  • Accepted : 2017.03.11
  • Published : 2017.06.30

Abstract

Recently, global warming and drastic climate change are the greatest threat to the world. The climate change can affect plant productivity by reducing plant adaptation to diverse environments including frequent high temperature; worsen drought condition and increased pathogen transmission and infection. Plants have to survive in this condition with a variety of biotic (pathogen/pest attack) and abiotic stress (salt, high/low temperature, drought). Plants can interact with beneficial microbes including plant growth-promoting rhizobacteria, which help plant mitigate biotic and abiotic stress. This overview presents that rhizobacteria plays an important role in induced systemic resistance (ISR) to biotic stress or induced systemic tolerance (IST) to abiotic stress condition; bacterial determinants related to ISR and/or IST. In addition, we describe effects of rhizobacteria on defense/tolerance related signal pathway in plants. We also review recent information including plant resistance or tolerance against multiple stresses ($biotic{\times}abiotic$). We desire that this review contribute to expand understanding and knowledge on the microbial application in a constantly varying agroecosystem, and suggest beneficial microbes as one of alternative environment-friendly application to alleviate multiple stresses.

식물은 재배기간 동안 세균, 진균, 바이러스 등의 생물 스트레스뿐만 아니라 고온, 염, 건조 등 다양한 환경 스트레스에도 노출되어 왔다. 최근에는 기후 이상현상으로 인하여 환경 스트레스의 빈도 및 강도가 불규칙적으로 증가하고 있으며 이로 인해 병원균의 생장과 영향도 변화하여 생물과 환경의 복합 스트레스가 식물 재배에 큰 영향을 주고 있다. 유용미생물을 이용한 식물의 저항성 유도는 다양한 생물과 환경 스트레스로부터 식물을 보호하는 데 도움을 주며, 이러한 스트레스에 대한 피해를 감소시킬 수 있는 가능성을 열어 주었다. 본 리뷰에서는 식물의 생물과 환경 스트레스에 대한 피해를 감소시키는 데 영향을 주는 미생물의 결정인자에 대해 기술하였으며 미생물 결정인자에 의해 유도되는 식물 신호전달 체계 변화에 대해 기술하였다. 또한 복합 스트레스 경감을 위한 미생물의 역할과 연구 방향에 대해 기술하였다. 이 리뷰를 통해 변화하는 환경에 대비하기 위해서 다양한 방안을 마련하고 있는 농민들에게 도움이 되기를 바라며, 실제 유용미생물 연구가 식물 재배 중 발생할 수 있는 다양한 스트레스에 따른 농가 피해를 감소시킬 효과적 대응 방안으로 이어지길 바란다.

Keywords

References

  1. Abdel-Mawgoud, A. M., Lepine, F. and Deziel, E. 2010. Rhamnolipids: diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 86: 1323-1336. https://doi.org/10.1007/s00253-010-2498-2
  2. Ahmad, M., Zahir, Z. A., Asghar, H. N. and Asghar, M. 2011. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 57: 578-589. https://doi.org/10.1139/w11-044
  3. Ait Barka, E., Nowak, J. and Clement, C. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl. Environ. Microbiol. 72: 7246-7252. https://doi.org/10.1128/AEM.01047-06
  4. Alami, Y., Achouak, W., Marol, C. and Heulin, T. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 66: 3393-3398. https://doi.org/10.1128/AEM.66.8.3393-3398.2000
  5. Algar, E., Gutierrez-Manero, F. J., Garcia-Villaraco, A., Garcia-Seco, D., Lucas, J. A. and Ramos-Solano, B. 2014. The role of isoflavone metabolism in plant protection depends on the rhizobacterial MAMP that triggers systemic resistance against Xanthomonas axonopodis pv. glycines in Glycine max (L.) Merr. cv. Osumi. Plant Physiol. Biochem. 82: 9-16. https://doi.org/10.1016/j.plaphy.2014.05.001
  6. Arshad, M., Shaharoona, B. and Mahmood, T. 2008. Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18: 611-620. https://doi.org/10.1016/S1002-0160(08)60055-7
  7. Ashraf, M., Hasnain, S., Berge, O. and Mahmood, T. 2004. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol. Fertil. Soils 40: 157.
  8. Atkinson, N. J., Lilley, C. J. and Urwin, P. E. 2013. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 162: 2028-2041. https://doi.org/10.1104/pp.113.222372
  9. Atkinson, N. J. and Urwin, P. E. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63: 3523-3543. https://doi.org/10.1093/jxb/ers100
  10. Audenaert, K., Pattery, T., Cornelis, P. and Hofte, M. 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant-Microbe Interact. 15: 1147-1156. https://doi.org/10.1094/MPMI.2002.15.11.1147
  11. Azami-Sardooei, Z., Franca, S. C., De Vleesschauwer, D. and Hofte, M. 2010. Rivoflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide- fueled resistance response. Physiol. Mol. Plant Pathol. 75: 23-29. https://doi.org/10.1016/j.pmpp.2010.08.001
  12. Azpiroz, R., Wu, Y., LoCascio, J. C. and Feldmann, K. A. 1998. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10: 219-230. https://doi.org/10.1105/tpc.10.2.219
  13. Badri, D. V., Weir, T. L., van der Lelie, D. and Vivanco, J. M. 2009. Rhizosphere chemical dialogues: plant-microbe interactions. Curr. Opin. Biotechnol. 20: 642-650. https://doi.org/10.1016/j.copbio.2009.09.014
  14. Bakker, A. W. and Schippers, B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol. Biochem. 19: 451-457. https://doi.org/10.1016/0038-0717(87)90037-X
  15. Bakker, P. A. H. M., Pieterse, C. M. J. and van Loon, L. C. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97: 239-243. https://doi.org/10.1094/PHYTO-97-2-0239
  16. Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. D. and Whittaker, J. B. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol. 8: 1-16. https://doi.org/10.1046/j.1365-2486.2002.00451.x
  17. Barriuso, J., Solano, B. R. and Gutierrez Manero, F. J. 2008. Protection against pathogen and salt stress by four plant growthpromoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98: 666-672. https://doi.org/10.1094/PHYTO-98-6-0666
  18. Barth, C., Moeder, W., Klessig, D. F. and Conklin, P. L. 2004. The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol. 134: 1784-1792. https://doi.org/10.1104/pp.103.032185
  19. Bashan, Y. and De-Bashan, L. E. 2002. Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 68: 2637-2643. https://doi.org/10.1128/AEM.68.6.2637-2643.2002
  20. Baya, A. M., Boethling, R. S. and Ramos-Cormenzana, A. 1981. Vitamin production in relation to phosphate solubilization by soil bacteria. Soil Biol. Bilchem. 13: 527-531. https://doi.org/10.1016/0038-0717(81)90044-4
  21. Beneduzi, A., Ambrosini, A. and Passaglia, L. M. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35(4 Suppl): 1044-1051. https://doi.org/10.1590/S1415-47572012000600020
  22. Bensalim, S., Nowak, J. and Asiedu, S. K. 1998. A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am. J. Potato Res. 75: 145-152. https://doi.org/10.1007/BF02895849
  23. Bhattacharyya, P. N. and D. K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327-1350. https://doi.org/10.1007/s11274-011-0979-9
  24. Bilski, P., Li, M. Y., Ehrenshaft, M., Daub, M. E. and Chignell, C. F. 2000. Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem. Photobiol. 71: 129-134. https://doi.org/10.1562/0031-8655(2000)071<0129:SIPVBP>2.0.CO;2
  25. Bogino, P. C., Oliva Mde, L., Sorroche, F. G. and Giordano, W. 2013. The role of bacterial biofilms and surface components in plantbacterial associations. Int. J. Mol. Sci. 14: 15838-15859. https://doi.org/10.3390/ijms140815838
  26. Bostock, R. M., Pye, M. F. and Roubtsova, T. V. 2014. Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu. Rev. Phytopathol. 52: 517-549. https://doi.org/10.1146/annurev-phyto-081211-172902
  27. Boubakri, H., Gargouri, M., Mliki, A., Brini, F., Chong, J. and Jbara, M. 2016. Vitamins for enhancing plant resistance. Planta 244: 529-543. https://doi.org/10.1007/s00425-016-2552-0
  28. Boyer, J. S. 1982. Plant productivity and environment. Science 218: 443-448. https://doi.org/10.1126/science.218.4571.443
  29. Bray, E. A., Bailey-Serres, J. and Weretilnyk, E. 2000. Responses to abiotic stresses. In: Biochemistry and Molecular Biology of Plants, eds. by W. Gruissem, B. Buchannan and R. Jones, pp. 1158-1249. American Society of Plant Physiologists, Rockville, MD, USA.
  30. Campbell, G. R., Taga, M. E., Mistry, K., Lloret, J., Anderson, P. J., Roth, J. R. and Walker, G. C. 2006. Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of $B_{12}$. Proc. Natl. Acad. Sci. U. S. A. 103: 4634-4639. https://doi.org/10.1073/pnas.0509384103
  31. Carrillo, P. G., Mardaraz, C., Pitta-Alvarez, S. I. and Giulietti, A. M. 1996. Isolation and selection of biosurfactant-producing bacteria. World J. Microbiol. Biotechnol. 12: 82-84. https://doi.org/10.1007/BF00327807
  32. Carrillo‐Castaneda, G., Munoz, J. J., Peralta‐Videa, J. R., Gomez, E. and Gardea‐Torresdey, J. L. 2003. Plant growth‐promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J. Plant Nutr. 26: 1801-1814.
  33. Carrillo-Castaneda, G., Munoz, J. J., Peralta-Videa, J. R., Gomez, E. and Gardea-Torresdey, J. L. 2005. Modulation of uptake and translocation of iron and copper from root to shoot in common bean by siderophore-producing microorganisms. J. Plant Nutr. 28: 1853-1865. https://doi.org/10.1080/01904160500251340
  34. Chaparro, J. M., Sheflin, A. M., Manter, D. K. and Vivanco, J. M. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils. 48: 489-499. https://doi.org/10.1007/s00374-012-0691-4
  35. Chen, H. and Xiong, L. 2005. Pyridoxine is required for postembryonic root development and tolerance to osmotic and oxidative stresses. Plant J. 44: 396-408. https://doi.org/10.1111/j.1365-313X.2005.02538.x
  36. Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J. Y., Lee, Y. H., Cho, B. H., Yang, K. Y., Ryu, C. M. and Kim, Y. C. 2008. 2R,3Rbutanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21: 1067-1075. https://doi.org/10.1094/MPMI-21-8-1067
  37. Choudhary, D. K., Kasotia, A., Jain, S., Vaishnav, A., Kumari, S., Sharma, K. P. and Varma, A. 2016. Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J. Plant Growth Regul. 35: 276-300. https://doi.org/10.1007/s00344-015-9521-x
  38. Cohen, A. C., Travaglia, C. N., Bottini, R. and Piccoli, P. N. 2009. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87: 455-462. https://doi.org/10.1139/B09-023
  39. Conn, V. M., Walker, A. R. and Franco, C. M. 2008. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21: 208-218. https://doi.org/10.1094/MPMI-21-2-0208
  40. Cook, R. J., Thomashow, L. S., Weller, D. M., Fujimoto, D., Mazzola, M., Bangera, G. and Kim, D. S. 1995. Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. U. S. A. 92: 4197-4201. https://doi.org/10.1073/pnas.92.10.4197
  41. De Meyer, G., Audenaert, K. and Hofte, M. 1999. Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. Eur. J. Plant Pathol. 105: 513-517. https://doi.org/10.1023/A:1008741015912
  42. De Vleesschauwer, D. and Hofte, M. 2009. Rhizobacteria-induced systemic resistance. Adv. Bot. Res. 51: 223-281.
  43. Dimkpa, C., Weinand, T. and Asch, F. 2009. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32: 1682-1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x
  44. Dodd, I. C. and Perez-Alfocea, F. 2012. Microbial amelioration of crop salinity stress. J. Exp. Bot. 63: 3415-3428. https://doi.org/10.1093/jxb/ers033
  45. Dodd, I. C., Zinovkina, N. Y., Safronova, V. I. and Belimov, A. A. 2010. Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol. 157: 361-379. https://doi.org/10.1111/j.1744-7348.2010.00439.x
  46. Dodds, P. N. and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11: 539-548.
  47. Dong, H. and Beer, S. V. 2000. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90: 801-811. https://doi.org/10.1094/PHYTO.2000.90.8.801
  48. Egamberdiyeva, D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36: 184-189. https://doi.org/10.1016/j.apsoil.2007.02.005
  49. Eliasson, L., Bertell, G. and Bolander, E. 1989. Inhibitory action of auxin on root elongation not mediated by ethylene. Plant Physiol. 91: 310-314. https://doi.org/10.1104/pp.91.1.310
  50. Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., Khan, F. A., Khan, F., Chen, Y., Wu, C., Tabassum, M. A., Chun, M. X., Afzal, M., Jan, A., Jan, M. T. and Huang, J. 2015. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ. Sci. Pollut. Res. 22: 4907-4921. https://doi.org/10.1007/s11356-014-3754-2
  51. Falardeau, J., Wise, C., Novitsky, L. and Avis, T. J. 2013. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J. Chem. Ecol. 39: 869-878. https://doi.org/10.1007/s10886-013-0319-7
  52. Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R. and White, L. L. 2014. Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects, Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Changes. Cambridge University Press, Cambridge, UK and New York, NY, USA.
  53. Figueiredo, M. V. B., Burity, H. A., Martinez, C. R. and Chanway, C. P. 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. Soil Ecol. 40: 182-188. https://doi.org/10.1016/j.apsoil.2008.04.005
  54. Flemming, H. C. and Wingender, J. 2001. Relevance of microbial extracellular polymeric substances (EPSs)-Part I: structural and ecological aspects. Water Sci. Technol. 43: 1-8.
  55. Forni, C., Duca, D. and Glick, B. R. 2016. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil. 410: 335-356.
  56. Fu, Z. Q. and Dong, X. 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64: 839-863. https://doi.org/10.1146/annurev-arplant-042811-105606
  57. Glick, B. R. 2006. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS. Microbiol. Lett. 251: 1-7.
  58. Glick, B. R., Cheng, Z., Czarny, J. and Duan, J. 2007a. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119: 329-339. https://doi.org/10.1007/s10658-007-9162-4
  59. Glick, B. R., Todorovic, B., Czarny, J., Cheng, Z., Duan, J. and Mc- Conkey, B. 2007b. Promotion of plant growth by bacterial ACC deaminase. Crit. Rev. Plant Sci. 26: 227-242. https://doi.org/10.1080/07352680701572966
  60. Goel, A. K., Lundberg, D., Torres, M. A., Matthews, R., Akimoto-Tomiyama, C., Farmer, L., Dangl, J. L. and Grant, S. R. 2008. The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants. Mol. Plant-Microbe Interact. 21: 361-370. https://doi.org/10.1094/MPMI-21-3-0361
  61. Gontia-Mishra, I., Sasidharan, S. and Tiwari, S. 2014. Recent developments in use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnol. Lett. 36: 889-898. https://doi.org/10.1007/s10529-014-1458-9
  62. Gozzo, F. and Faoro, F. 2013. Systemic acquired resistance (50 years after discovery): moving from the lab to the field. J. Agric. Food Chem. 61: 12473-12491. https://doi.org/10.1021/jf404156x
  63. Haggag, W. M. 2007. Colonization of exopolysaccharide-producing Paenibacillus polymyxa on peanut roots for enhancing resistance against crown rot disease. Afr. J. Biotechnol. 6: 1568-1577.
  64. Hamayun, M., Khan, S. A., Khan, A. L., Shin, J. H., Ahmad, B., Shin, D. H. and Lee, I. J. 2010. Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. J. Agric. Food Chem. 58: 7226-7232. https://doi.org/10.1021/jf101221t
  65. Hansen, J., Sato, M. and Ruedy, R. 2012. Perception of climate change. Proc. Natl. Acad. Sci. U. S. A. 109: E2415-E2423. https://doi.org/10.1073/pnas.1205276109
  66. Hardoim, P. R., van Overbeek, L. S. and Elsas, J. D. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16: 463-471. https://doi.org/10.1016/j.tim.2008.07.008
  67. Heil, M. 1999. Systemic acquired resistance: available information and open ecological questions. J. Ecol. 87: 341-346. https://doi.org/10.1046/j.1365-2745.1999.00359.x
  68. Hoffland, E., Pieterse, C. M. J., Bik, P. L. and van Pelt, J. A. 1995. Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Phyisol. Mol. Plant Pathol. 46: 309-320. https://doi.org/10.1006/pmpp.1995.1024
  69. Iavicoli, A., Boutete, E., Buchala, A. and Metraux, J. P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16: 851-858. https://doi.org/10.1094/MPMI.2003.16.10.851
  70. Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329. https://doi.org/10.1038/nature05286
  71. Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. and Greenberg, J. T. 2009. Priming in systemic plant immunity. Science 324: 89-91. https://doi.org/10.1126/science.1170025
  72. Kal, B. S., Lee, N. E. and Park, J. B. 2015. A study of climate change patterns of Korea through the standardization and composite impact analysis of the long-term weather data. J. Korean Soc. Hazard Mitig. 15: 377-383. (In Korean)
  73. Kang, B. R., Han, S. H., Kim, C. H. and Kim, Y. C. 2016a. Riboflavinbased BiodoctorTM induced disease resistance against rice blast and bacterial leaf blight diseases. Res. Plant Dis. 22: 202-207. https://doi.org/10.5423/RPD.2016.22.3.202
  74. Kang, I. J., Kim, S. H., Shim, H. K., Seo, M. J., Shin, D. B., Roh, J. H. and Heu, S. 2016b. Incidence of wildfire disease on soybean of Korea during 2014-2015. Res. Plant Dis. 22: 38-43. https://doi.org/10.5423/RPD.2016.22.1.38
  75. Kang, S. M., Radhakrishnan, R., Khan, A. L., Kim, M. J., Park, J. M., Kim, B. R., Shin, D. H. and Lee, I. J. 2014. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol. Biochem. 84: 115-124. https://doi.org/10.1016/j.plaphy.2014.09.001
  76. Kariola, T., Brader, G., Helenius, E., Li, J., Heino, P. and Palva, E. T. 2006. Early responsive to dehydration 15, a negative regulator of abscisic acid responses in Arabidopsis. Plant Physiol. 142: 1559-1573. https://doi.org/10.1104/pp.106.086223
  77. Kaushal, M. and Wani, S. P. 2016. Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann. Microbiol. 66: 35-42. https://doi.org/10.1007/s13213-015-1112-3
  78. Keskin, B. C., Sarikaya, A. T., Yüksel, B. and Memon, A. R. 2010. Abscisic acid regulated gene expression in bread wheat (Triticum aestivum L.). Aust. J. Crop Sci. 4: 617-625.
  79. Khripach, V., Zhabinskii, V. and de Groot, A. 2000. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 86: 441-447. https://doi.org/10.1006/anbo.2000.1227
  80. Kissoudis, C., van de Wiel, C., Visser, R. G. and van der Linden, G. 2014. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front. Plant Sci. 5: 207.
  81. Kiyosue, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. ERD15, a cDNA for a dehydration-induced gene from Arabidopsis thaliana. Plant Physiol. 106: 1707. https://doi.org/10.1104/pp.106.4.1707
  82. Kloepper, J. W. 1983. Effect of seed piece inoculation with plant growth-promoting rhizobacteria on populations of Erwinia carotovora on potato roots and in daughter tubers. Phytopathology 73: 217-219. https://doi.org/10.1094/Phyto-73-217
  83. Kloepper, J. W. 1991. Development of in vivo assays for prescreening antagonists of Rhizoctonia solani on cotton. Phytopathology 81: 1006-1013. https://doi.org/10.1094/Phyto-81-1006
  84. Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  85. Kloepper, J. W. and Schroth, M. N. 1981. Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71: 1020-1024. https://doi.org/10.1094/Phyto-71-1020
  86. Lee, S. G., Lee, H. J., Kim, S. K., Choi, C. S. and Park, S. T. 2016. Influence of waterlogging period on the growth, physiological responses, and yield of kimchi cabbage. J. Environ. Sci. Int. 25: 535-542. (In Korean) https://doi.org/10.5322/JESI.2016.25.4.535
  87. Lee, S. M., Chung, J. H. and Ryu, C. M. 2015. Augmenting plant immune responses and biological control by microbial determinants. Res. Plant Dis. 21: 161-179. (In Korean) https://doi.org/10.5423/RPD.2015.21.3.161
  88. Liu, F., Xing, S., Ma, H., Du, Z. and Ma, B. 2013. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl. Microbiol. Biotechnol. 97: 9155-9164. https://doi.org/10.1007/s00253-013-5193-2
  89. Lucas, J. A., Garcia-Cristobal, J., Bonilla, A., Ramos, B. and Gutierrez- Manero, J. 2014. Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiol. Biochem. 82: 44-53. https://doi.org/10.1016/j.plaphy.2014.05.007
  90. Madgwick, J. W., West, J. S., White, R. P., Semenov, M. A., Townsend, J. A., Turner, J. A. and Fitt, B. D. L. 2011. Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. Eur. J. Plant Pathol. 130: 117. https://doi.org/10.1007/s10658-010-9739-1
  91. Maksimov, I. V., Abizgil'dina, R. R. and Pusenkova, L. I. 2011. Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl. Biochem. Microbiol. 47: 333-345. https://doi.org/10.1134/S0003683811040090
  92. Maksimov, I. V., Veselova, S. V., Nuzhnaya, T. V., Sarvarova, E. R. and Khairullin, R. M. 2015. Plant growth-promoting bacteria in regulation of plant resistance to stress factors. Russ. J. Plant Physiol. 62: 715-726. https://doi.org/10.1134/S1021443715060114
  93. Mendes, R., Garbeva, P. and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37: 634-663. https://doi.org/10.1111/1574-6976.12028
  94. Meziane, H., van der Sluis, I., van Loon, L. C., Hofte, M. and Bakker, P. A. 2005. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant Pathol. 6: 177-185. https://doi.org/10.1111/j.1364-3703.2005.00276.x
  95. Miyamoto, E., Watanabe, F., Takenaka, H. and Nakano, Y. 2002. Uptake and physiological function of vitamin $B_{12}$ in a photosynthetic unicellular coccolithophorid alga, Pleurochrysis carterae. Biosci. Biotechnol. Biochem. 66: 195-198. https://doi.org/10.1271/bbb.66.195
  96. Nadeem, S. M., Zahir, Z. A., Naveed, M. and Arshad, M. 2007. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can. J. Microbiol. 53: 1141-1149. https://doi.org/10.1139/W07-081
  97. Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S., Yamaguchi, I. and Yoshida, S. 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33: 887-898. https://doi.org/10.1046/j.1365-313X.2003.01675.x
  98. Naseem, H. and Bano, A. 2014. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J. Plant Interact. 9: 689-701. https://doi.org/10.1080/17429145.2014.902125
  99. Newman, M. A., Sundelin, T., Nielsen, J. T. and Erbs, G. 2013. MAMP(microbe-associated molecular pattern) triggered immunity in plants. Front. Plant Sci. 4: 139.
  100. Niu, D., Wang, X., Wang, Y., Song, X., Wang, J., Guo, J. and Zhao, H. 2016. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway. Biochem. Biophys. Res. Commun. 469: 120-125. https://doi.org/10.1016/j.bbrc.2015.11.081
  101. Okmen, B. and Doehlemann, G. 2014. Inside plant: biotrophic strategies to modulate host immunity and metabolism. Curr. Opin. Plant Biol. 20: 19-25. https://doi.org/10.1016/j.pbi.2014.03.011
  102. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x
  103. Palacios, O. A., Bashan, Y. and de-Bashan, L. E. 2014. Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria: an overview. Biol. Fertil. Soils 50: 415-432. https://doi.org/10.1007/s00374-013-0894-3
  104. Pandey, P. K., Yadav, S. K., Singh, A., Sarma, B. K., Mishra, A. and Singh, H. B. 2012. Cross-species alleviation of biotic and abiotic stresses by the endophyte Pseudomonas aeruginosa PW09. J. Phytopathol. 160: 532-539. https://doi.org/10.1111/j.1439-0434.2012.01941.x
  105. Pastori, G. M., Kiddle, G., Antoniw, J., Bernard, S., Veljovic-Jovanovic, S., Verrier, P. J., Noctor, G. and Foyer, C. H. 2003. Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15: 939-951. https://doi.org/10.1105/tpc.010538
  106. Paul, M. J., Primavesi, L. F., Jhurreea, D. and Zhang, Y. 2008. Trehalose metabolism and signaling. Annu. Rev. Plant Biol. 59: 417-441. https://doi.org/10.1146/annurev.arplant.59.032607.092945
  107. Pierik, R., Sasidharan, R. and Voesenek, L. A. C. J. 2007. Growth control by ethylene: adjusting phenotypes to the environment. J. Plant Growth Regul. 26: 188-200. https://doi.org/10.1007/s00344-006-0124-4
  108. Pieterse, C. M. J., Van Pelt, J. A., Ton, J., Parchmann, S., Mueller, M. J., Buchala, A. J. and Metraux, J. P. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol. Mol. Plant Pathol. 57: 123-134. https://doi.org/10.1006/pmpp.2000.0291
  109. Pieterse, C. M., van Wees, S. C., Hoffland, E., van Pelt, J. A. and van Loon, L. C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8: 1225-1237. https://doi.org/10.1105/tpc.8.8.1225
  110. Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571-1580. https://doi.org/10.1105/tpc.10.9.1571
  111. Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., van Wees, S. C. and Bakker, P. A. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52: 347-375. https://doi.org/10.1146/annurev-phyto-082712-102340
  112. Porcel, R., Zamarreno, Á. M., Garcia-Mina, J. M. and Aroca, R. 2014. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol. 14: 36. https://doi.org/10.1186/1471-2229-14-36
  113. Pozo, M. J., Van der Ent, S., van Loon, L. C. and Pieterse, C. M. 2008. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol. 180: 511-523. https://doi.org/10.1111/j.1469-8137.2008.02578.x
  114. Prime-A-Plant Group; Conrath, U., Bechers, G. J., Flors, V., Garcia-Agustin, P., Jakab, G. Mauch, F., Newman, M. A., Pieterse, C. M., Poinssot, B. Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L. and Mauch-Mani, B. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19: 1062-1071. https://doi.org/10.1094/MPMI-19-1062
  115. Qurashi, A. W. and Sabri, A. N. 2011. Osmoadaptation and plant growth promotion by salt tolerant bacteria under salt stress. Afr. J. Microbiol. Res. 5: 3546-3554.
  116. Raaijmakers, J. M., de Bruijn, I. and de Kock, M. J. 2006. Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol. Plant-Microbe Interact. 19: 699-710. https://doi.org/10.1094/MPMI-19-0699
  117. Radhakrishnan, R., Khan, A. L. and Lee, I. J. 2013. Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. J. Microbiol. 51: 850-857. https://doi.org/10.1007/s12275-013-3168-8
  118. Ramegowda, V. and Senthil-Kumar, M. 2015. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J. Plant Physiol. 176: 47-54. https://doi.org/10.1016/j.jplph.2014.11.008
  119. Rasmussen, S., Barah, P., Suarez-Rodriguez, M. C., Bressendorff, S., Friis, P., Costantino, P., Bones, A. M., Nielsen, H. B. and Mundy, J. 2013. Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol. 161: 1783-1794. https://doi.org/10.1104/pp.112.210773
  120. Roberson, E. B. and Firestone, M. K. 1992. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 58: 1284-1291.
  121. Rodriguez, R. J., Henson, J., van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y. O. and Redman, R. S. 2008. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2: 404-416. https://doi.org/10.1038/ismej.2007.106
  122. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8: 1809-1819. https://doi.org/10.1105/tpc.8.10.1809
  123. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026. https://doi.org/10.1104/pp.103.026583
  124. Ryu, C. M., Hu, C. H., Locy, R. D. and Kloepper, J. W. 2005. Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268: 285-292. https://doi.org/10.1007/s11104-004-0301-9
  125. Saleem, M., Arshad, M., Hussain, S. and Bhatti, A. S. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34: 635-648. https://doi.org/10.1007/s10295-007-0240-6
  126. Sanchez, L., Courteaux, B., Hubert, J., Kauffmann, S., Renault, J. H., Clement, C., Baillieul, F. and Dorey, S. 2012. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol. 160: 1630-1641. https://doi.org/10.1104/pp.112.201913
  127. Sang, M. K., Kim, J. D., Kim, B. S. and Kim, K. D. 2011. Root treatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathology 101: 666-678. https://doi.org/10.1094/PHYTO-08-10-0224
  128. Sang, M. K. and Kim, K. D. 2012. The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J. Appl. Microbiol. 113: 383-398. https://doi.org/10.1111/j.1365-2672.2012.05330.x
  129. Sankari, J. U., Dinakar, S. and Seka, C. 2011. Dual effect of Azospirillum exopolysaccharides (EPS) on the enhancement of plant growth and biocontrol of blast (Pyricularia oryzae) disease in upland rice (var. ASD-19). J. Phytol. 3: 16-19.
  130. Shan, L., He, P., Li, J., Heese, A., Peck, S. C., Nürnberger, T., Martin, G. B. and Sheen, J. 2008. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptorsignaling complexes and impede plant immunity. Cell Host Microbe 4: 17-27. https://doi.org/10.1016/j.chom.2008.05.017
  131. Shintu, P. V. and Jayaram, K. M. 2015. Phosphate solubilising bacteria (Bacillus polymyxa): an effective approach to mitigate drought in tomato (Lycopersicon esculentum Mill.). Tropic. Plant Res. 2: 17-22.
  132. Siddiqui, I. A. and Shaukat, S. S. 2003. Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol. Biochem. 35: 1615-1623. https://doi.org/10.1016/j.soilbio.2003.08.006
  133. Spaepen, S., Bossuyt, S., Engelen, K., Marchal, K. and Vanderleyden, J. 2014. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxinproducing bacterium Azospirillum brasilense. New Phytol. 201: 850-861. https://doi.org/10.1111/nph.12590
  134. Stocker, T. E., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M. 2013. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, NY, USA.
  135. Strange, R. N. and Scott, P. R. 2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43: 83-116. https://doi.org/10.1146/annurev.phyto.43.113004.133839
  136. Suarez, R., Wong, A., Ramirez, M., Barraza, A., del Carmen Orozco, M., Cevallos, M. A., Lara, M., Hernandez, G. and Iturriaga, G. 2008. Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol. Plant-Microbe Interact. 21: 958-966. https://doi.org/10.1094/MPMI-21-7-0958
  137. Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. and Mittler, R. 2014. Abiotic and biotic stress combinations. New Phytol. 203: 32-43. https://doi.org/10.1111/nph.12797
  138. Tarkka, M. T. and Piechulla, B. 2007. Aromatic weapons: truffles attack plants by the production of volatiles. New Phytol. 175: 381-383. https://doi.org/10.1111/j.1469-8137.2007.02165.x
  139. Timmusk, S., Abd El-Daim, I. A., Copolovici, L., Tanilas, T., Kannaste, A., Behers, L., Nevo, E., Seisenbaeva, G., Stenstrom, E. and Niinemets, U. 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9: e96086. https://doi.org/10.1371/journal.pone.0096086
  140. Timmusk, S. and Wagner, E. G. 1999. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant-Microbe Interact. 11: 951-959.
  141. Ton, J., Flors, V. and Mauch-Mani, B. 2009. The multifaceted role of ABA in disease resistance. Trends Plant Sci. 14: 310-317. https://doi.org/10.1016/j.tplants.2009.03.006
  142. Tran, H., Ficke, A., Asiimwe, T., Hofte, M. and Raaijmakers, J. M. 2007. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol. 175: 731-742. https://doi.org/10.1111/j.1469-8137.2007.02138.x
  143. van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol. 119: 243-254. https://doi.org/10.1007/s10658-007-9165-1
  144. van Loon, L. C., Bakker, P. A. and Pieterse, C. M. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483. https://doi.org/10.1146/annurev.phyto.36.1.453
  145. Varnier, A. L, Sanchez, L., Vatsa, P., Boudesocque, L., Garcia-Brugger, A., Rabenoelina, F., Sorokin, A., Renault, J. H., Kauffmann, S., Pugin, A., Clement, C., Baillieul, F. and Dorey, S. 2009. Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ. 32: 178-193. https://doi.org/10.1111/j.1365-3040.2008.01911.x
  146. Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J. and Zhu, J. K. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45: 523-539. https://doi.org/10.1111/j.1365-313X.2005.02593.x
  147. Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. and SkZ, A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184: 13-24. https://doi.org/10.1016/j.micres.2015.12.003
  148. Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C. M. J., van Loon, L. C. and Bakker, P. A. H. M. 2012. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102: 403-412. https://doi.org/10.1094/PHYTO-08-11-0222
  149. Wei, G., Kloepper, J. W. and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Collototrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81: 1508-1512. https://doi.org/10.1094/Phyto-81-1508
  150. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52(Spec Issue): 487-511. https://doi.org/10.1093/jxb/52.suppl_1.487
  151. Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. and Somero, G. N. 1982. Living with stress: evolution of osmolyte systems. Science 217: 1214-1222. https://doi.org/10.1126/science.7112124
  152. Yang, J., Kloepper, J. W. and Ryu, C. M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14: 1-4. https://doi.org/10.1016/j.tplants.2008.10.004
  153. Yue, H., Mo, W., Li, C., Zheng, Y. and Li, H. 2007. The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant Soil 297: 139-145. https://doi.org/10.1007/s11104-007-9327-0
  154. Yuwono, T., Handayani, D. and Soedarsono, J. 2005. The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aust. J. Agric. Res. 56: 715-721. https://doi.org/10.1071/AR04082
  155. Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E., Shi, H. and Pare, P. W. 2008. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol. Plant-Microbe Interact. 6: 737-744.
  156. Zhang, S., Yang, X., Sun, M., Sun, F., Deng, S. and Dong, H. 2009. Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J. Integr. Plant Biol. 51: 167-174. https://doi.org/10.1111/j.1744-7909.2008.00763.x

Cited by

  1. Enhancement of Plant Growth and Drying Stress Tolerance by Bacillus velezensis YP2 Colonizing Kale Root Endosphere vol.26, pp.2, 2018, https://doi.org/10.11625/KJOA.2018.26.2.217