• 제목/요약/키워드: Saigo hypergeometric fractional integral operators

검색결과 10건 처리시간 0.018초

A Study of Marichev-Saigo-Maeda Fractional Integral Operators Associated with the S-Generalized Gauss Hypergeometric Function

  • Bansal, Manish Kumar;Kumar, Devendra;Jain, Rashmi
    • Kyungpook Mathematical Journal
    • /
    • 제59권3호
    • /
    • pp.433-443
    • /
    • 2019
  • In this work, we evaluate the Mellin transform of the Marichev-Saigo-Maeda fractional integral operator with Appell's function $F_3$ type kernel. We then discuss six special cases of the result involving the Saigo fractional integral operator, the $Erd{\acute{e}}lyi$-Kober fractional integral operator, the Riemann-Liouville fractional integral operator and the Weyl fractional integral operator. We obtain new and known results as special cases of our main results. Finally, we obtain the images of S-generalized Gauss hypergeometric function under the operators of our study.

CERTAIN FRACTIONAL INTEGRAL INEQUALITIES INVOLVING HYPERGEOMETRIC OPERATORS

  • Choi, Junesang;Agarwal, Praveen
    • East Asian mathematical journal
    • /
    • 제30권3호
    • /
    • pp.283-291
    • /
    • 2014
  • A remarkably large number of inequalities involving the fractional integral operators have been investigated in the literature by many authors. Very recently, Baleanu et al. [2] gave certain interesting fractional integral inequalities involving the Gauss hypergeometric functions. Using the same fractional integral operator, in this paper, we present some (presumably) new fractional integral inequalities whose special cases are shown to yield corresponding inequalities associated with Saigo, Erd$\acute{e}$lyi-Kober and Riemann-Liouville type fractional integral operators. Relevant connections of the results presented here with those earlier ones are also pointed out.

SOME FRACTIONAL INTEGRAL FORMULAS INVOLVING THE PRODUCT OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Kim, Yongsup
    • 호남수학학술지
    • /
    • 제39권3호
    • /
    • pp.443-451
    • /
    • 2017
  • Very recently, Agarwal gave remakably a scads of fractional integral formulas involving various special functions. Using the same technique, we obtain certain(presumably) new fractional integral formulas involving the product of confluent hypergeometric functions. Some interesting special cases of our two main results are considered.

CERTAIN IMAGE FORMULAS OF (p, 𝜈)-EXTENDED GAUSS' HYPERGEOMETRIC FUNCTION AND RELATED JACOBI TRANSFORMS

  • Chopra, Purnima;Gupta, Mamta;Modi, Kanak
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.1055-1072
    • /
    • 2022
  • Our aim is to establish certain image formulas of the (p, 𝜈)-extended Gauss' hypergeometric function Fp,𝜈(a, b; c; z) by using Saigo's hypergeometric fractional calculus (integral and differential) operators. Corresponding assertions for the classical Riemann-Liouville(R-L) and Erdélyi-Kober(E-K) fractional integral and differential operators are deduced. All the results are represented in terms of the Hadamard product of the (p, 𝜈)-extended Gauss's hypergeometric function Fp,𝜈(a, b; c; z) and Fox-Wright function rΨs(z). We also established Jacobi and its particular assertions for the Gegenbauer and Legendre transforms of the (p, 𝜈)-extended Gauss' hypergeometric function Fp,𝜈(a, b; c; z).

FRACTIONAL INTEGRATION AND DIFFERENTIATION OF THE (p, q)-EXTENDED MODIFIED BESSEL FUNCTION OF THE SECOND KIND AND INTEGRAL TRANSFORMS

  • Purnima Chopra;Mamta Gupta;Kanak Modi
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.755-772
    • /
    • 2023
  • Our aim is to establish certain image formulas of the (p, q)-extended modified Bessel function of the second kind Mν,p,q(z) by employing the Marichev-Saigo-Maeda fractional calculus (integral and differential) operators including their composition formulas and using certain integral transforms involving (p, q)-extended modified Bessel function of the second kind Mν,p,q(z). Corresponding assertions for the Saigo's, Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators are deduced. All the results are represented in terms of the Hadamard product of the (p, q)-extended modified Bessel function of the second kind Mν,p,q(z) and Fox-Wright function rΨs(z).

FRACTIONAL CALCULUS OPERATORS OF THE PRODUCT OF GENERALIZED MODIFIED BESSEL FUNCTION OF THE SECOND TYPE

  • Agarwal, Ritu;Kumar, Naveen;Parmar, Rakesh Kumar;Purohit, Sunil Dutt
    • 대한수학회논문집
    • /
    • 제36권3호
    • /
    • pp.557-573
    • /
    • 2021
  • In this present paper, we consider four integrals and differentials containing the Gauss' hypergeometric 2F1(x) function in the kernels, which extend the classical Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators. Formulas (images) for compositions of such generalized fractional integrals and differential constructions with the n-times product of the generalized modified Bessel function of the second type are established. The results are obtained in terms of the generalized Lauricella function or Srivastava-Daoust hypergeometric function. Equivalent assertions for the Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential are also deduced.

A GRÜSS TYPE INTEGRAL INEQUALITY ASSOCIATED WITH GAUSS HYPERGEOMETRIC FUNCTION FRACTIONAL INTEGRAL OPERATOR

  • Choi, Junesang;Purohit, Sunil Dutt
    • 대한수학회논문집
    • /
    • 제30권2호
    • /
    • pp.81-92
    • /
    • 2015
  • In this paper, we aim at establishing a generalized fractional integral version of Gr$\ddot{u}$ss type integral inequality by making use of the Gauss hypergeometric function fractional integral operator. Our main result, being of a very general character, is illustrated to specialize to yield numerous interesting fractional integral inequalities including some known results.

CERTAIN FRACTIONAL INTEGRALS AND IMAGE FORMULAS OF GENERALIZED k-BESSEL FUNCTION

  • Agarwal, Praveen;Chand, Mehar;Choi, Junesang;Singh, Gurmej
    • 대한수학회논문집
    • /
    • 제33권2호
    • /
    • pp.423-436
    • /
    • 2018
  • We aim to establish certain Saigo hypergeometric fractional integral formulas for a finite product of the generalized k-Bessel functions, which are also used to present image formulas of several integral transforms including beta transform, Laplace transform, and Whittaker transform. The results presented here are potentially useful, and, being very general, can yield a large number of special cases, only two of which are explicitly demonstrated.

ERTAIN k-FRACTIONAL CALCULUS OPERATORS AND IMAGE FORMULAS OF GENERALIZED k-BESSEL FUNCTION

  • Agarwal, P.;Suthar, D.L.;Tadesse, Hagos;Habenom, Haile
    • 호남수학학술지
    • /
    • 제43권2호
    • /
    • pp.167-181
    • /
    • 2021
  • In this paper, the Saigo's k-fractional integral and derivative operators involving k-hypergeometric function in the kernel are applied to the generalized k-Bessel function; results are expressed in term of k-Wright function, which are used to present image formulas of integral transforms including beta transform. Also special cases related to fractional calculus operators and Bessel functions are considered.

FRACTIONAL INTEGRATION AND DIFFERENTIATION OF THE (p, q)-EXTENDED BESSEL FUNCTION

  • Choi, Junesang;Parmar, Rakesh K.
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.599-610
    • /
    • 2018
  • We aim to present some formulas for Saigo hypergeometric fractional integral and differential operators involving (p, q)-extended Bessel function $J_{{\nu},p,q}(z)$, which are expressed in terms of Hadamard product of the (p, q)-extended Gauss hypergeometric function and the Fox-Wright function $_p{\Psi}_q(z)$. A number of interesting special cases of our main results are also considered. Further, it is emphasized that the results presented here, which are seemingly complicated series, can reveal their involved properties via those of the two known functions in their respective Hadamard product.