• Title/Summary/Keyword: Safety Issues

Search Result 1,822, Processing Time 0.026 seconds

Multi-unit risk assessment of nuclear power plants: Current status and issues

  • Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1199-1209
    • /
    • 2018
  • After the Fukushima-Daiichi accident in 2011, the multi-unit risk, i.e., the risk due to several nuclear power plants (NPPs) in a site has become an important issue in several countries such as Korea, Canada, and China. However, the multi-unit risk has been discussed for a long time in the nuclear community before the Fukushima-Daiichi nuclear accident occurred. The regulatory authorities around the world and the international organizations had proposed requirements or guidelines to reduce the multi-unit risk. The concerns regarding the multi-unit risk can be summarized in the following three questions: How much the accident of an NPP in a site affects the safety of other NPPs in the same site? What is the total risk of a site with many NPPs? Will the risk of the simultaneous accidents at several NPPs in a site such as the Fukushima Daiichi accident be low enough? The multi-unit risk assessment (MURA) in an integrated framework is a practical approach to obtain the answers for the above questions. Even though there were few studies to assess the multi-unit risk before the Fukushima-Daiichi nuclear accident, there are still several issues to be resolved to perform the complete MURA. This article aims to provide an overview of the multi-unit risk issues and its assessment. We discuss the several critical issues in the current MURA to get useful insights regarding the multi-unit risk with the current state art of probabilistic safety assessment (PSA) technologies. Also, the qualitative answers for the above questions are addressed.

A Review on Fire Safety Engineering: Key Issues for High-Rise Buildings

  • Li, Guo-Qiang;Zhang, Chao;Jiang, Jian
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.265-285
    • /
    • 2018
  • This paper presents a state-of-the-art review on the design, research and education aspects of fire safety engineering (FSE) with a particular concern on high-rise buildings. FSE finds its root after Great Fire of Rome in 64 AD, followed by Great London Fire in 1666. The development of modern FSE is continuously driven by industry revolution, insurance community and government regulations. Now FSE has become a unique engineering discipline and is moving towards performance-based design since 1990s. The performance-based fire safety design (PBFSD) involves identification of fire safety goals, design objectives, establishment of performance criteria, and selection of proper solutions for fire safety. The determination of fire scenarios and design fires have now become major contents for PBFSD. To experience a rapid and positive evolution in design and research consistent with other engineering disciplines, it is important for fire safety engineering as a profession to set up a special educational system to deliver the next-generation fire safety engineers. High-rise buildings have their unique fire safety issues such as rapid fire and smoke spread, extended evacuation time, longer fire duration, mixed occupancies, etc., bringing more difficulties in ensuring life safety and protection of property and environment. A list of recommendations is proposed to improve the fire safety of high-rise buildings. In addition, some source information for specific knowledge and information on FSE is provided in Appendix.

Fuzzy Logic in Nuclear Safety Issues

  • Ruan, Da
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.34-44
    • /
    • 1997
  • The Belgian Nuclear Research Centre(SCK${\cdot}$CEN) has been a pioneer of the peaceful uses of nuclear energy after over forty years of existence. Recently, SCK${\cdot}$CEN's financial support of doctoral and postdoctoral research in close collaboration with universities has been a vital ingredient for securing a quality profile committed to the pursuit of execllence. FLINS, Fuzzy Logic and Intelligent technologies in Nuclear Science, was initially built within one of the postdoctoral research project at SCK${\cdot}$CEN. Among SCK${\cdot}$CEN's activities which will have an important impact on its scientific future, the application of fuzzy logic and intelligent technologies in nuclear science and engineering opens new domains in radiation protection, safety assessment, human reliability, nuclear reactor control, waste and disposal, etc. In this paper, we review the available literature on fuzzy logic in nuclear applications. We then present the initiative of R&D on fuzzy logic applications at SCK${\cdot}$CEN, namely, (1) safety control for a nuclear reactor, and (2) a safety evaluation model for nuclear transmission lines. By these two examples of nuclear applications, we illustrate the potential use of fuzzy logic in nuclear safety issues.

  • PDF

A Study on the Safety Improvement of Lifting Purpose Chain Sling (인양용 체인슬링의 안전성 향상 방안 고찰)

  • Jin Woo Lee;Cheol Ho Han;Song Woo Lee;Young Hun Jeon;Chang Hee Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.4
    • /
    • pp.60-67
    • /
    • 2023
  • Various lifting slings are used in domestic industrial sites depending on the purpose, form, and environment. Each sling has its characteristics, and safe lifting work is possible when its performance meets the regulations. Therefore, this study analyzed domestic and foreign regulations and guidelines related to chain slings. It identified significant problems by analyzing the chain-sling-related disaster cases. The current status of chain slings used by various industries and the ways to improve chain sling safety were studied. The major chain sling issues were: 1) employing improper components to chains, 2) having different safety coefficients between the regulation and industrial standards, and 3) using chains unsuitable for lifting purposes. Based on these issues, the following measures were proposed to improve chain sling work safety: 1) revise the safety coefficient requirements under the Regulations on Occupational Safety and Health Standards, 2) disseminate specialized sling courses, and 3) strengthen on-site chain slings-related training. In the future, this study is expected to minimize chain use mistakes by unifying the safety coefficient related to chain slings and recognizing the importance of correctly selecting components employed in the chain.

AI-based system for automatically detecting food risk information from news data (뉴스 데이터로부터 식품위해정보 자동 추출을 위한 인공지능 기술)

  • Baek, Yujin;Lee, Jihyeon;Kim, Nam Hee;Lee, Hunjoo;Choo, Jaegul
    • Food Science and Industry
    • /
    • v.54 no.3
    • /
    • pp.160-170
    • /
    • 2021
  • A recent advance in communication technologies accelerates the spread of food safety issues once presented by the news media. To respond to those safety issues and take steps in a timely manner, automatically detecting related information from the news data matters. This work presents an AI-based system that detects risk information within a food-related news article. Experts in food safety areas participated in labeling risk information from the food-related news articles; we acquired 43,527 articles in which food names and risk information are marked as labels. Based on the news document, our system automatically detects food names and risk information by analyzing similarities between words within a text by leveraging learned word embedding vectors. Our AI-based system shows higher detection accuracy scores over a non-AI rule-based system: achieving an absolute gain of +32.94% in F1 for the food name category and +41.53% for the risk information category.

Prevention through Design (PtD) of integrating accident precursors in BIM

  • Chang, Soowon;Oh, Heung Jin;Lee, JeeHee
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.94-102
    • /
    • 2022
  • Construction workers are engaged in many activities that may expose them to serious hazards, such as falling, unguarded machinery, or being struck by heavy construction equipment. Despite extensive research in building information modeling (BIM) for safety management, current approaches, detecting safety issues after design completion, may limit the opportunities to prevent predictable and potential accidents when decisions of building materials and systems are made. In this respect, this research proposes a proactive approach to detecting safety issues from the early design phase. This research aims to explore accident precursors and integrate them into BIM for tracking safety hazards during the design development process. Accident precursors can be identified from construction incident reports published by OSHA using a text mining technique. Through BIM-integrated accident precursors, construction safety hazards can be identified during the design phase. The results will contribute to supporting a successful transition from the design stage to the construction stage that considers a safe construction workplace. This will advance the body of knowledge about construction safety management by elucidating a hypothesis that safety hazards can be detected during the design phase involving decisions about materials, building elements, and equipment. In addition, the proactive approach will help the Architecture, Engineering and Construction (AEC) industry eliminate occupational safety hazards before near-miss situations appear on construction sites.

  • PDF

Study on the Design of Shaft Strut for Naval Ships with Twin Screw (2축 함정의 스트럿 설계에 관한 고찰)

  • 박명규;신영균
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 2002
  • High speed naval ships are configured with open shafts The shafts, bearings, and propellers are supported by shaft struts. Proper design of struts involves issues of structural, vibration, and hydrodynamic analysis and design. Strut arm cavitation in high speed occurs because of a misalignment of the strut arm with the local incident flow. Proper selection of the strut section can minimize the generation of cavitation. This paper describes issues in the design struts and notices based on the design of Patrol Craft and Amphibious Ship.

  • PDF

Creating a Culture of Prevention in Occupational Safety and Health Practice

  • Kim, Yangho;Park, Jungsun;Park, Mijin
    • Safety and Health at Work
    • /
    • v.7 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • The incidence of occupational injuries and diseases associated with industrialization has declined markedly following developments in science and technology, such as engineering controls, protective equipment, safer machinery and processes, and greater adherence to regulations and labor inspections. Although the introduction of health and safety management systems has further decreased the incidence of occupational injuries and diseases, these systems are not effective unless accompanied by a positive safety culture in the workplace. The characteristics of work in the $21^{st}$ century have given rise to new issues related to workers' health, such as new types of work-related disorders, noncommunicable diseases, and inequality in the availability of occupational health services. Overcoming these new and emerging issues requires a culture of prevention at the national level. The present paper addresses: (1) how to change safety cultures in both theory and practice at the level of the workplace; and (2) the role of prevention culture at the national level.

Human Reliability Analysis of Soft Control Operations in Nuclear Power Plants: Issues and Perspectives

  • Lee, Seung Jun;Jung, Wondea
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.87-96
    • /
    • 2013
  • Objective: The aim of this study is to describe several issues which should be considered in the human reliability analysis of soft control operations in nuclear power plants. Background: The operational environment of advanced main control rooms is totally different from that of conventional control rooms. The soft control is one of the major distinguishable features of the advanced main control rooms. The soft control operations should be analyzed to estimate the effects on human reliability. Method: The literatures, about task analysis, simulation data analysis, and a human reliability analysis method for the soft control, were reviewed. From the review, important issues for the human reliability analysis of the soft control were raised. Results: The results of task and simulation data analysis showed that the soft control characteristics could have large effect on human reliability and they should be considered in the human reliability analysis of the soft control operations. Conclusion: The soft control may affect human error and performance of operators. The issues described in this paper should be considered in the human reliability method for the advanced main control rooms. Application: The results of the soft control operation analysis might help to design more efficient interface and education/training program for preventing human errors. The described issues might help to develop a human reliability analysis method for soft control operations.