This review article addresses the role of safety professionals in the diffusion strategies for predictive analytics for safety performance. The article explores the models, definitions, roles, and relationships of safety professionals in knowledge application, access, management, and leadership in safety analytics. The article addresses challenges safety professionals face when integrating safety analytics in organizational settings in four operations areas: application, technology, management, and strategy. A review of existing conventional safety data sources (safety data, internal data, external data, and context data) is briefly summarized as a baseline. For each of these data sources, the article points out how emerging analytic data sources (such as Industry 4.0 and the Internet of Things) broaden and challenge the scope of work and operational roles throughout an organization. In doing so, the article defines four perspectives on the integration of predictive analytics into organizational safety practice: the programmatic perspective, the technological perspective, the sociocultural perspective, and knowledge-organization perspective. The article posits a four-level, organizational knowledge-skills-abilities matrix for analytics integration, indicating key organizational capacities needed for each area. The work shows the benefits of organizational alignment, clear stakeholder categorization, and the ability to predict future safety performance.
Jun Hwan Kim;Hyunjin Paek;Sungjin Jeon;Young Jae Choi
Journal of the Korean Society for Aviation and Aeronautics
/
v.31
no.3
/
pp.42-49
/
2023
Not only in aviation industry but also in other industries, safety data plays a key role to improve the level of safety performance. By analyzing safety data such as aviation safety report (text data), hazard can be identified and removed before it leads to a tragic accident. However, pre-processing of raw data (or natural language data) collected from each site should be carried out first to utilize proactive or predictive safety management system. As air traffic volume increases, the amount of data accumulated is also on the rise. Accordingly, there are clear limitation in analyzing data directly by manpower. In this paper, a topic prediction model for aviation safety mandatory report is proposed. In addition, the prediction accuracy of the proposed model was also verified using actual aviation safety mandatory report data. This research model is meaningful in that it not only effectively supports the current aviation safety mandatory report analysis work, but also can be applied to various data produced in the aviation safety field in the future.
Journal of the Korean Society for Aviation and Aeronautics
/
v.28
no.4
/
pp.89-101
/
2020
In order to enhance the safety of the international aviation industry, the International Civil Aviation Organization has recommended establishing an operational foundation for systematic and integrated collection, storage, analysis and sharing of aviation safety data. Accordingly, the Korea aviation industry also needs to comprehensively manage the safety data which generated and collected by various stakeholders related to aviation safety, and through this, it is necessary to previously identify and remove hazards that may cause accident. For more effective data management and utilization, a standard structure should be established to enable integrated management and sharing of safety data. Therefore, this study aims to propose the framework about how to manage and integrate the aviation safety data for big data-based aviation safety management and shared platform.
The new chemicals are developed and circulated without the verified toxicity data. So, the accidents and occupational diseases, such as explosion, fire, suffocation about deadly poisons etc. are frequently to workers. Classifications of chemicals suited with guideline and an offer of correct chemical information data are the molt important thing for the establishment of suitable chemical management system. The GHS (Globally Harmonized System of classification and labeling of chemicals) is based with the chemical classifications and unification plan. The warning symbol and phrases are established for improvements of chemical information data system. According to these unified and improved systematic form of data, and the chemical information data, the workplaces will be presented many chemical safety and risk data correctly. In this paper, we will present constructions and accomplishment contents-based chemical management of workplace through development of chemical information data and the nice using for new chemical investigation and risk assessment of chemicals in workplaces.
As natural disasters are increasing due to the unusual weather and the modern society is getting complicated, the rapid change of the urban environment has increased human disasters. Thus, citizens are becoming more anxious about social safety. The importance of preparation for safety has been suggested by providing the disaster safety services such as regional safety index, life safety map, and disaster safety portal application. In this paper, we propose an application framework to predict the urban safety index based on user's location with realtime weather/atmosphere data after creating a predication model based on the machine learning using number of occurrence cases and weather/atmosphere history data. Also, we implement an application to provide traffic safety index with executing preprocessing occurrence cases of traffic and weather/atmosphere data. The existing regional safety index, which is displayed on the Si-gun-gu area, has been mainly utilized to establish safety plans for districts vulnerable to national policies on safety. The proposed system has an advantage to service useful information to citizens by providing urban safety index based on location of interests and current position with realtime related data.
Park, Hyunho;Kwon, Eunjung;Byon, Sungwon;Shin, Won-Jae;Jung, Eui-Suk;Lee, Yong-Tae
ETRI Journal
/
v.44
no.2
/
pp.300-312
/
2022
Recently, public safety services have attracted significant attention for their ability to protect people from crimes. Rapid detection of dangerous situations (that is, abnormal situations where someone may be harmed or killed) is required in public safety services to reduce the time required to respond to such situations. This study proposes a novel danger detection technology based on multimodal data, which includes data from multiple sensors (for example, accelerometer, gyroscope, heart rate, air pressure, and global positioning system sensors), and multilog data, which includes contextual logs of humans and places (for example, contextual logs of human activities and crime-ridden districts) over time. To recognize human activity (for example, walk, sit, and punch), the proposed technology uses multimodal data analysis with an attitude heading reference system and long short-term memory. The proposed technology also includes multilog data analysis for detecting whether recognized activities of humans are dangerous. The proposed danger detection technology will benefit public safety services by improving danger detection capabilities.
Journal of the Korea Society of Computer and Information
/
v.21
no.5
/
pp.57-64
/
2016
In this paper, we propose the design of railway safety common data model to provide common transformation method for collecting data from railway facility fields to Real-time railway safety monitoring and control system. This common data model is divided into five abstract sub-models according to the characteristics of data such as 'StateInfoMessage', 'ControlMessage', 'RequestMessage', 'ResponseMessage' and 'ExtendedXXXMessage'. This kind of model structure allows diverse heterogeneous data acquisitions and its common conversion method to DDS (Data Distribution Service) format to share data to the sub-systems of Real-time railway safety monitoring and control system. This paper contains the design of common data model and its DDS Topic expression for DDS communication, and presents two kinds of data transformation case studied for verification of the model design.
Measuring the food safety has been focused only on the psychological consumers' recognition of food safety. The actual measurement tool should consist of the evidence-based statistical data to assess the level of national food safety in scientific perspectives. This paper described the development of a concept to measure the food safety of the food chain based on OECD PSR framework. This paper discusses the elaboration of a set of 8 food safety related data issued as statistical data, and which were same weighted. These food safety statistical data (FSDs) were derived as the basis of measuring the variation of food safety during 2013-2019. The values of the primary production indicator (PPI), the processing and manufacturing indicator (PMI), and the distribution and consumption indicator (DCI) are 0.558-0.859, 0.533-0.691, and 0.979-0.982, respectively. The food safety status (FSS) derived from the safety indicator values of each of the three stages is 0.700-0.810. In order to increase the level of food safety, it is necessary to pay attention to PMI and PPI management. In the future, continuously calculating the level of food safety, managing it like the level of psychological safety, and further expanding it to the level of food safety between countries will help establish policies to improve the level of food safety in Korea.
Kim, Jun Hwan;Lim, Jae Jin;Park, Yu Rim;Lee, Jang Ryong
Journal of the Korean Society for Aviation and Aeronautics
/
v.29
no.4
/
pp.105-116
/
2021
The importance of a systematic approach to collect, process, analyze, and share safety data in aviation safety management is continuously increasing. Accordingly, the domestic aviation industry has been making efforts to build a Big-data platform that can utilize multi-field safety data generated and managed by various stakeholders and to develop safety management technology based on them. Big data platforms not only must meet appropriate technical requirements, but also need to establish a management system for effective operation. The purpose of this study is to suggest the requirements of the aviation safety big data platform operation procedure and plan by reviewing the advanced overseas cases (FAA ASIAS). This study can provide overall framework and managerial direction for the operation of the aviation safety big data platform.
KANG, Sung Won;PARK, Sung Yong;SHIN, Jae Kwon;YOO, Wi Sung;SHIN, Yoonseok
International conference on construction engineering and project management
/
2022.06a
/
pp.721-727
/
2022
Construction safety remains an ongoing concern, and project managers have been increasingly forced to cope with myriad uncertainties related to human operations on construction sites and the lack of a skilled workforce in hazardous circumstances. Various construction fatality monitoring systems have been widely proposed as alternatives to overcome these difficulties and to improve safety management performance. In this study, we propose an intelligent, automatic control system that can proactively protect workers using both the analysis of big data of past safety accidents, as well as the real-time detection of worker non-compliance in using personal protective equipment (PPE) on a construction site. These data are obtained using computer vision technology and data analytics, which are integrated and reinforced by lessons learned from the analysis of big data of safety accidents that occurred in the last 10 years. The system offers data-informed recommendations for high-risk workers, and proactively eliminates the possibility of safety accidents. As an illustrative case, we selected a pilot project and applied the proposed system to workers in uncontrolled environments. Decreases in workers PPE non-compliance rates, improvements in variable compliance rates, reductions in severe fatalities through guidelines that are customized according to the worker, and accelerations in safety performance achievements are expected.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.