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This review article addresses the role of safety professionals in the diffusion strategies for predictive
analytics for safety performance. The article explores the models, definitions, roles, and relationships of
safety professionals in knowledge application, access, management, and leadership in safety analytics.
The article addresses challenges safety professionals face when integrating safety analytics in organi-
zational settings in four operations areas: application, technology, management, and strategy. A review of
existing conventional safety data sources (safety data, internal data, external data, and context data) is
briefly summarized as a baseline. For each of these data sources, the article points out how emerging
analytic data sources (such as Industry 4.0 and the Internet of Things) broaden and challenge the scope of
work and operational roles throughout an organization. In doing so, the article defines four perspectives
on the integration of predictive analytics into organizational safety practice: the programmatic
perspective, the technological perspective, the sociocultural perspective, and knowledge-organization
perspective. The article posits a four-level, organizational knowledge-skills-abilities matrix for ana-
lytics integration, indicating key organizational capacities needed for each area. The work shows the
benefits of organizational alignment, clear stakeholder categorization, and the ability to predict future
safety performance.
� 2020 Occupational Safety and Health Research Institute, Published by Elsevier Korea LLC. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Clyde Tombaugh, who discovered the ninth planet in the solar
systemdthe cold and distant object now known as Plutodmade
the discovery by going through an interesting process of detective
work. In fact, the mysterious existence of this unobservable planet
was based on observable astronomical data: wobbles in the orbits
of Uranus and Neptune [1]. The existence of the object was pro-
posed in theory as a possibility or a “missing” object before it ever
showed in a telescope. For those interested in the role of Occupa-
tional Health and Safety (OHS) professionals in safety analytics,
Tombaugh's work models a shift of thinking: from identifying
observed objects to postulating objects based on data from other
observations and other sources, some only tangentially related to
the object being sought. OHS professionals face a similar shift of
thinking. If we imagine “safety performance” as the focus of
attention (identifying a behavior) for OHS professionals, then we
can imagine an environment (or ecosystem) in which measures
other than direct observation (incident investigation) might lead to
“finding Pluto.” The correctly postulated safety behavior is the
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“Pluto” of analytic OHS work with big data systems. Finding “Plu-
tos” suggests the possibility of finding safety incidents and per-
formance profiles.

Tombaugh's direction was forward-looking (predictive) rather
than backward-looking (quantitative). Similarly, OHS systems have
traditionally focused on past events; generalizing about incidents
and using the data to designmitigation systems. But this backward-
looking has not allowed them to predict incidents or identify safety
behaviors with high degrees of certainty [2]. The goal of OHS pre-
dictive data analytics, also known as safety informatics or safety
intelligence, is not to quantify patterns of errors and system failures,
but to sense out hard-to-find archetypes of safety performance [3e
6]. To reach new levels of effectiveness, OHS professionals need to
start “finding Plutos.” This kind of predictive analytical thinking, or
the tracing of “weak and potential information” opens opportu-
nities to mine the knowledge hidden in big data systemsda catch-
all phrase here for “known systems”dsuch as we will explore later
in this paper [6]. Theoretically, these big data systemsdrightly
identified, accessed, managed, and capitalizeddhold the keys to
finding the “missing planets” in the solar system of OHS [7].
n, Alberta, T5J4P6, Canada.
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Table 1
Variables for predicting safety performance

Variable Applicability to safety analytics

Employment security Employment security has been linked with safety performance. In addition, low
performance has been linked to lower motivation and low safety compliance.

Selective hiring The fit of employees for their job has been shown to correlate with positive safety
performance. Employees with a better job fit have better chances of avoiding injuries.

Extensive training The link between safety and performance shows the impact of safety training on
employee engagement. According to Zacharatos, “organizational commitment predicts
work performance in general and safety performance in particular.” [18]

Self-managed teams and decentralized decision making Team-working variables can indicate cohesion and also help safety analysts find instances
of shared responsibility and accountability for making positive safety decisions.

Status distinctions The more an organization draws lines between “front-line employees” and those in other
levels of employees, the more a “blame” framework develops. Reducing status
distinctions may predict safety performance.

Information sharing Sharing safety information can lead to safety performance. “Organizations with better
safety programs were characterized by more open discussion between management
and employees.” [18]

Compensation contingent on safety performance Data indicates that safety performance is improved when employees are convinced that
their work is valued and rewarded.

Transformational leadership As a variable, transformational leadership can indicate key to high safety performance and
is associated with greater safety and lower job injuries.

High-quality work Interesting, meaningful work can be a positive predictor of safety performance.

Measurement of management processes Factors relating to effective management processes can predict subsequent safety
performance.

A system of high-performance practices Safety performance systems benefit from an integrated approach that recognizes the
interdependence of organizational systems.
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This article is a theoretical and practical exploration that sets the
stage for transformed OHS professional practice by looking first at
the variety of data sources available to OHS ecosystems, and then at
the practical guidance provided by professional role de-
scriptions [8,9]. Following that stage-setting, the article will present
a conceptual system for envisioning the integration of data ana-
lytics into an organization. This integrated structure of roles and
responsibilities builds on the scholarship of Wick in identifying the
diffusion of knowledge and knowledge management in organiza-
tions [10]. In that earlier work, Wick focused on the roles of the
technical communicator, the IT specialist, the manager, and the
executive as each having a key role and perspective on knowledge
integration. This paper extends that thinking by postulating a
similar role of integration in terms of the OHS professionals and
predictive data analytics.

It is important to remember that the claims for OHS effective-
ness at the level of these imagined ecosystem models need to be
based on processing capabilities that go beyond, or extend, tradi-
tional channels of information and analytical skills heretofore
available to many professionals, not just those in safety; and that go
beyond the isolated safety project or initiative [11]. The challenge is
to connect the dots so that positive safety outcomes not only
persist, but improve [12].

To address the role of safety professionals in the diffusion
strategies for predictive analytics tools, the following two questions
must be answered:

1. How has the work of safety professionals changed in light of
predictive analytics and professional requirements?

2. How can predictive analytics be implemented in programming,
technological systems, management and strategic leadership?

To address these questions, wewill (1) briefly survey the sources
of predictive analytics data available to OHS professionals; (2)
examine four perspectives on predictive analytics based on these
investigations; and (3) conclude by positing a four-level knowl-
edge-skills-abilities model for organizational analytics integration,
indicating key capacities needed for each operational unit. The
results of this work will yield insights into new leadership oppor-
tunities for OHS professionals.
2. Background for shifts in safety thinking

Two thingsd(1) developments in data availability and the in-
formation technology to exploit it, and (2) revisions to OHS certi-
fication requirementsdhave focused the attention of safety
professionals in North America and globally on new data sources
that may improve health and safety outcomes for business and
industry. The recent developments in data availability, under the
journal categories of psychology, management, and technology, are
known by various terms: big data, digital ecosystems, advanced
informatics, predictive analytics, integrated digital systems, and data
analytics [13]. These emerging, multidisciplinary sources of data
promise to supplement or replace traditional historical incident
data, and also to transform enterprise thinking about the value
added by advanced health and safety programs [14,15].

One way to look at big data is through its “v" characteristics,
defined as volume, velocity, variety, value, variability, and visuali-
zation [14,16,17]. A summary of these characteristics shows that, in
addition to high-volume sources like social media and The Internet
of Things, big data sources are being applied to a wide variety of
disciplines, as Li's 2016 review indicates [15]. A key characteristic of
big data is that its analysis and application (strategically and
operationally) apply across sectors and disciplines [14]. One way to
see how it applies specifically to safety and safety performance is in
the work of Zacharatos et al., who review a number of applications
of big data to safety, and who identify the applicability of data that
is mined from high-performance safety systems [18,19]. The argu-
ment made in this review is that, “high-performance work systems
can be applied to improving workplace safety just as well as eco-
nomic performance.” (p. 78) Li et al., also show how biometrics is
emerging as a way to visualize these broader research do-
mains [20]. This assertion aligns with the view of safety as a “per-
formance variable,” making the target of predictive explorations
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not safety incidents but, more broadly, the conditions for positive
safety performance [8,21e24]. Table 1 offers a summary of these
high-performance variables, with indications of how they might be
useful in predicting safety performance.

The second motivation to improve health and safety outcomes
comes from new professional certification requirements. Recent
revisions of the International Network of Safety and Health Prac-
titioner Organizations (INSHPO) and the Board of Canadian Regis-
tered Safety Professionals certification requirements for OHS
professionals have redefined the role of data analytics in all aspects
of the safety enterprise: technological and process tools, program
design, safety project management, and strategic planning for
safety culture growth and competitive advantage in knowledge-
rich industries. For example, The Professional Capability Frame-
work: A Global Framework for Practice, published by INSHPO in
October, 2015, states that the Professional role in OHS requires
critical thinking, information gathering, communication skills, and
judgement to identify and analyze complex OHS problems to
generate practical evidence-based solutions.” (p. 8) Although some
work on project-level data integration has been done [11], just how
organizationswill shift to new sources of data and shift the thinking
about safety initiatives remains to be sorted out.

2.1. The workplace safety ecosystems model

This organizational shift can be seen as a shift from an individ-
ualized safety model (with data collection and analysis focusing on
past incidents) to a focus on a workplace safety ecosystems model,
with data collection and analysis that draws on a variety of data
sources, including huge data repositories [6,25e27]. Some re-
searchers refer to these two ways of thinking as “Safety I" and
“Safety II.” [9,28] One such data repository, for example, is the data
accumulated by smart devices and machines: the so-called Internet
of Things [29]. The emerging field of safety informatics and “smart
safety decision-making” are revolutionizing the role of big data (or
“big safety data”) in safety thinking [3,5,30]. Another source of in-
formation, for example, is the “open web.” [31] Dasgupta claims
that, “curating and managing health and safety related incidents
from various sources is an important part of an organization.” (p.
434) Still another source is the paradigm shift occurring in OHS and
safety known as Industry 4.0 [32]. Industry 4.0 represents the
convergence of manufacturing with the digital revolution, artificial
intelligence, the Internet of things, and every device called “smart”
[32]. According to Badri et al. “In Industry 4.0, businesses digitize
their physical assets and integrate them into digital ecosystems
throughout the value chain.” [32] As a result of this digitization of
manufacturing, these sources of data become the building blocks
for safety ecosystems models, rather than individualized safety
models.

3. Sources of data for OHS analytics ecosystems

According to scholarly reviews of safety analytics, the clues for
finding objects or incidents in data not collected historically or in
incident records, can come from hidden variables: variables “not
captured in incident reports.” [23,33] These types of data include:
equipment operation and process data [34,35], vehicle telem-
etry [36,37], weather, geo-spacial, socio-demographic, human re-
sources (payroll, performance data) [38] and training [39], industry
and other data. For example, author networks using biometrics are
important ways to visualize big-data resulting from meta-anal-
ysis [34]. These data also include new developments in Industry
4.0, the Internet of Things, artificial intelligence, enterprise wear-
ables, and other environmental safety reporting systems. In the
following section, wewill focus on four categories of information as
a way of organizing new and existing sources, and making sense of
them. The categories chosen here as broad categories of existing
sources of data are: safety data, HR data, context setting data, and
external data [33]. These categories provide an overview of the
range of data sets available andwill suffice for the expository task at
hand.

3.1. Safety data

Safety data consist of the more conventional, historical data
collected by government and international organizations and used
by OHS professionals [40]. Few doubt that these sources of infor-
mation, well analyzed, can help predict and prevent future in-
cidents. Technically, such data are not new to OHS. What is new is
the analytical integration of them into accident mitigation strate-
gies based on predictive analytics. Doing so requires an advanced
degree of integration. One such type of safety data available to OHS
professionals is that of governmental regulatory groups, who gather
and maintain statistical record systems [41]. In Canada, for
example, such data would be compiled by the Canadian Centre for
Occupational Health and Safety [42]. Information available from
this source includes data collected in the National Work Injuries
Statistics Program and is supplied byworkers compensation boards
across Canada [43].

These conventional sources of safety data, often consulted by
OHS professionals, are summarized in the textbook Occupational
Health & Safety: Theory, Strategy & Industry Practice [44]. Conven-
tional sources include data collected through social-science
methods: interviews, focus groups, surveys and questionnaires,
observations, documentation, and laboratory experimentation [44].
As with all data sources, the challenge, as Dyck notes, is to avoid
mental filters and allow a professional to “see an issue from many
perspectives.” (p. 1191) Audits provide another source of data,
characterized by an attempt to measure results “against a pre-
determined protocol.” (p. 118). Audits are excellent sources of in-
formation about the success of OHS programs and management
systems. Similarly, incident investigation is a standard source of
data. Again, in the spirit of effective use of incident investigation
data, researchers suggest it “should be retrospective and prospec-
tive simultaneously.” [45].

The point of reviewing these conventional sources of safety data
is that big-data sources suggest innovative data analysis frame-
works. For example, a key to understanding and applying existing
safety data systems is to identify and focus on lagging in-
dicators [46]. However, as Hollnagel reminds us, “for effective safety
management in general, it is necessary to have leading indicators.”
Leading indicators are not the only way to address the challenge of
predicting incidents: variables needed in the analysis of big-data
systems should account for the variability of human detection,
observation, and categorization [9,45].

In some ways, conventional sources of information gathering,
analysis, and action are similar to or extensions of existing systems.
For example:

� Root cause analysis gives way to machine learning algorithms
[22,29,45]

� Observational data gives way to big-data techniques [22]
� Historical data gives way to real-time “data-fusion frame-
works” [22].

As these observations suggest, the goal of safety analytics is
often not just to knowwhat happened, and towhom, but to hunt in
between these known perspectives to find new correlations. For
example, the safety data set in the offshore drilling industry
today is immeasurably larger than it was in previous years, because
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data are not only being collected in research events, butmoment by
moment thanks to safety wearables, cameras, sensors, and robotics
reporting. Concepts like “association rule” become important,
because they allow the safety professional, safety manager, safety
software engineer, or safety strategist to make sense by visualizing
categories, many of which may be suggested by artificial-
intelligence algorithms. Trevistan et al., make this point in look-
ing at data-mined information about offshore safety performance
factors [47]. Visualizations, such as the one in figure are [47],
illustrate the way relational concepts portray pathways through
data sets, pathways that can lead to understandings of clusters of
factors that model incidents of safety performance. In figure are
[47], the slider at the top allows for cycling through “association
rules” to discover patterns in “antecedents” and “consequences”
(roughly equivalent to conditions before and after an incident).
These associations show up as darkened areas in the visualizations.
Savvy safety professionals can use these associations to identify
potential safety behaviors, unforeseen in the broader context.

4. Context-setting data

What is the broader context of any given safety incident or safety
performance event? Answers to this question can often be found in
conventional sources of risk management information: What task
was being performed? What site variables were at play? What
equipment was being used? How complex was the resource and
production environment? These variables record the shape of
safety performance [44]. Such a positive view of the context has not
always been the case. As Dekker points out, in the past, the negative
emphasis was on human errors and accidents rather than on pos-
itive safety performance [8,48]. The positive emphasis on safety
performance, however, which is characteristic of the Safety Differ-
ently approach, suggests that expanded data sets of contextual in-
formation can reinforce the motivation to build on safety success
rather than punish for safety failure or non-compliance.

To that positive end, a number of innovative trends in analytics
take advantage of big data to search in unusual places to discover
emergent contexts of safety performance. These trends include:
robotics and cobotics [49,50], semantic photography [51], and so-
ciometric visualization [52,53]. The expansion of data sources that
we see in analytics work means that what might have appeared as
an anomaly in, say, incident data, can be correlated (e.g., using a
cross-entropy estimation approach) that aligns with historical data
from other sources and helps shape information found in incident
and contextual data [54]. The difference with big data is that these
shifts of knowledge emphasis can happen, as Bifet points out, in
real time.

Streaming data analysis in real time is becoming the fastest and
most efficient way to obtain useful knowledge from what is
happening now, allowing organizations to react quickly when
problems appear or to detect new trends helping to improve their
performance [55].

4.1. Internal data

Conventional sources of organizational data used in safety
planning rely heavily on the shaping of incident targets based on
human resources operational units and their information systems.
Dibenedetto identifies a number of conventional sources of data to
inform existing OHS information management systems. These
sources include: exposure monitoring records, Workers Compen-
sation Board records, equipment calibration and maintenance logs,
motor vehicle records, vendor lists, as well as chemical inventories
and material safety data sheets [56,57]. Much of this kind of in-
formation can be obtained through a healthy interaction with
human resources information systems. Rosters and staff allocation
systems that schedule andmanage safety performance interactions
provide data collected through staffing and scheduling enterprise
software [58]. Additional sources of resource operations data
include performance histories, skill and training evaluation infor-
mation repositories, all which make up conventional internal
sources of OHS data. However, a key distinction to make between
new and conventional sources of operational informationdwhich
is what we're talking about heredlies in the sheer size of the data
sets, and advances in data-mining methods and algorithms to use
in these humongoid human-resources data sets. Neural-network
data, for example, provides vast data sets that can inform the
prediction of job and safety performance [59,60].

But perhaps the most important trend in big-data analytics is
the swapping of a method-driven approach (that looked at specific
OHS variables) to a domain-driven approach that takes an inte-
grated and multidimensional (data ecosystems) approach. This
approach is illustrated in systems that evaluate targeted organiza-
tional business processes with the aim of optimizing all processes.
Morabito illustrates this in systems like Invenio�, that evaluate
“application log files, documents, email messages, and social sig-
nals to optimize an organization's business processes.” [61] The
advantage of this approach is the discovery of “underlying” com-
pany processes. Such company processes, seen as ontological or
formative structuration elements, can reveal archetypes of safety
performance stemming from unforeseen causes in unforeseen
settings. Other systems reviewed by Morabito offer similar inno-
vative ways of looking at internal, domain-specific data.

4.2. External data

External data sources of organizational and broader contextual
influencesdstakeholder benchmarks, cultural elements of the so-
cial and political (and other) economies, and sociodemographic
datadprovide important clues as to safety performance, both from
regressive and proactive viewpoints. Often these considerations
come under the umbrella term “diversity.” [44] Unhappily, cultural
assessment is often unstructured or hap-hazard, or worse, based on
inherent or implicit bias. Also, cultural assessments, including
sociodemographic variables, are often carried out by surveys that
target known characteristics and outcomes [62]. The question for
OHS strategists lies in how to augment known qualitative measures
with “new techniques for automated analysis of large amounts of
text in iterative fashion.” [63] Some suggestions for handling
external data include: using data framing for text [63,64], using
geo-coding for location tagging [64], and “knowledge network
analysis” for initial processing and high-level modelling of safety
performance [64].

To summarize, conventional sources of data available to safety
professionals took the form of safety (incident) data, context-
setting data, internal data, and external data. The availability of
and ability to process much larger data sets from tangentially
related organizational, material, and governmental systems has
expanded the purview of the safety professional. Both that purview
and the methods of exploiting it have been enhanced by data an-
alytics. The aim of understanding in this area is to derive some of
the potential benefits of safety analytics.

4.3. The benefits of advanced data analytics in OHS

The following sections provide an overview of new perspectives
in OHS through the lens of expanded data sources. As the earlier
discussion illustrates many conventional evidentiary sources of
data, including targeting and reflective methods like surveys and
interviews, as well as conventional environmental and industrial



Table 2
The benefits of advanced data analytics in OHS

1. Real-time ecosystem monitoring. Much of the direction and results of big data analytics focuses on creating systems that mine, process, and present data from
integrated sources in real time. Thus, the ability to vary the query or focus promises to enhance the exploration of the factors of safety performance.

2. Stakeholder segmentation. As a core function of health and safety practice, stakeholder segmentation is enhanced [15,27].

3. Descriptive to predictive. The emphasis on predictive power holds great promise of mitigating personal and environmental factors to enhance safety performance.
Nuanced examination of descriptive behaviors that ranges into uncharted data territory holds the promise of filling safety performance gaps.

4. Follows leading indicators. A crucial distinction between previous ways of seeing OHS planning is that big data analytics requires analysis of leading indicators of
ongoing streams of data collected for various reasons and not specifically for OHS purposes [21,22,49].

5. Bottom-up, domain-driven framework. [57] This shift in approach pays off in producing insights about safety performance that are “bottom-up” and have thus
enhanced possibilities in filling safety performance gaps.

6. Relevance over method. If for no other reason than flexibility and a sense of adventure, what actually works to better assist in perceiving safety performance will
work to create clearer categories than alignment with existing, and often siloed, domain knowledge (and their information systems) [57,65,73].

7. Big is better. Some data representations are suitable to limited, historical, and descriptive data sets (decision trees) while other representations, such as neural
networks that mimic biological neural networks require huge amounts of information. Thus, big data sets and systems allow for data representations that are
conducive to explorations into future safety performance [27,58,65].
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demographics, provide the direction of safety program develop-
ment beyond what has guided practitioners in the past. The pre-
ceding brief overview of big data analytic perspectives, built to
explore greatly expanded data sets using mining and other
methods, offers insights into the benefits of modelling safety per-
formance in this way. These benefits are summarized in Table 2.

According to Huang et al., “Access to large-scale, fast-moving,
complex streams of safety data-sets has the potential to funda-
mentally transform the way organizations make their safety de-
cisions. Accordingly, the [big data] support for [safety decision-
making] at all levels of organizations, along with the way they
are organized, is becoming increasingly critical.” [16] In the
following section, we provide a prototype matrix of perspectives on
this support, and derive some characteristics of that
transformation.

5. Perspectives on predictive analytics in safety

The preceding discussion of sources that facilitate data analytic
methods supports two important points. First, innovative analytics
methods can be seen as enhancements to existing and conventional
sources, rather than as entirely new sources. Second, for the OHS
professional, the disparate viewpoints on data analysis and data-
driven predictive analytics may best be seen as the functioning of
an entire data ecosystemdan amalgam of data sets, analytical al-
gorithms, visualization and knowledge representation systemsdall
guided by the motivation to find the ever-illusive, unseen model of
safety performance. However, as Ouyang et al. remind us, the
question remains: How can these valuable approaches to analytics
be integrated into an organization? [6].

Scholarly literature on the integration of analytics into organi-
zations suggests two main integration strategies: centralized and
decentralized. Grossman and Siegel address this question, noting
that " . there is as yet no consensus about how best to organize
analytics efforts within the organization and what core analytics
processes the organization must support.” [65] The authors review
three basic models of how to integrate analytics functions in an
organization: (1) centralized analytics; (2) decentralized analytics;
and (3) a hybrid model, whereby a critical mass of data scientists
are housed in a central unit, but also collaboratewith data scientists
distributed throughout the organization [65]. However,
Davenport approaches analytics integration from the perspective of
competitive advantage, and stresses that 11 of the 32 organizations
they surveyed that had robust data analytics initiatives, “managed
analytical activity at the enterprise (not departmental) level.” [66]
Pence supports this enterprise-level view, pointing out that an
enterprise-wide integration effort is required to clearly identify and
respond to “underlying organizational mechanisms” and their in-
formation systems that might support predictive analytics objec-
tives [64]. Still another view is taken by Ouyang et al., who look at
big safety data integration from a three-part perspective: the data
set, perspective, the technology perspective, and the safety
thinking or leadership perspective [6].

In this article, we take the enterprise-wide view, going
boldly where safety professionals have not gone before. The
question these models leave us with, however, is, How can we
view the integration of analytics into organizations in a way
that encompasses (and facilitates) the safety perspectives of
core programmatic, technological, managerial, and strategic
units that are more or less ubiquitous among organizations
seeking to implement analytics?

The next section, I will outline such an integration model that
attempts to account for four organizational perspectives on the
big-data analytic activities: the program perspective, the tech-
nological perspective, the socio-organizational perspective, and
the knowledge-organization perspective. The people behind all
these perspectives face decisions and follow processes suitable
for making knowledge from observed and recorded behavior. In
some work circumstances all of the roles below may be carried
out by one individual; but, as we shall see, specialized profes-
sional domain knowledge is needed to shape the overall use of
safety analytics. As a form of ontology of safety analytics, these
perspectives provide “a foundation for reasoning about the
domain.” [22].
6. The programmatic perspective

The programmatic perspective on predictive solutions has to do
with integrating the solution into the existing OHS management
programs, OHS policies, and program review mechanisms [44]. To
accomplish this the practitioner needs to address content, training,
evaluation, and continuous improvement of safety programs, as we
saw earlier, within the constraints of layers of national and inter-
national standards [24]. In doing so, the training and intervention
designers need to clearly link to leading indicators of safety per-
formance [44]. They inhabit the world of front-line safety per-
formers and their job is implementation. The “data-buck” stops
with safety programmers.

The following four points summarize the programmatic
perspective.

� Expertise: The work requires prioritization of interventions,
message-mapping and documentation, campaigns and
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storytelling, monitoring and evaluation, and review and
recursive knowledge storage [41].

� Challenge: The challenge is in representing the model in pro-
grams: how well does the Pluto that we have found match the
Pluto in the mind of the risk stakeholder, for instance [11,41].

� Process: The process requires constructive steps to implement
analytics models. The process requires a “holistic approach to
complex project planning” [11].

� Tasks: The task is programming forward-looking and predic-
tive analytical solutions [67].
7. The technological perspective

The technological perspective onpredictive analytics encompasses
thedomainof information technologyand software systemsdesign. In
regard to the five Vs of big data, this perspective focuses often on the
velocity of data and attempts to process data in real or near-real time
frames [29,68]. Unlike the programming emphasis in the previous
perspective, the technological perspective is often associatedwith the
processing stages of big data: development of algorithms, establishing
statistical validity, and providing knowledge representations appro-
priate for operational and strategic stakeholders [69]. Professionals in
this role often message to internal clients based on business and data
understandings, data preparation andmodeling, as well as evaluation
and deployment of knowledge models [29]. Of concern to IT pro-
fessionals are challenges in the design of database file systems,
knowledge base structure, and search and analysis algorithms. They
inhabit the world of vendors and solutions.

The following four points summarize the technological
perspective:

� Expertise: The perspective requires highly specialized exper-
tise in system architectures or approaches to processing and
analysis [29].

� Challenge: The challenge lies in effective extraction (vali-
dating, cleaning, recording, and transmission) from sources
collected for a purpose other than safety [70].

� Process: The process revolves around data-mining objectives
and model development [70].

� Tasks: The data representation and visualization tasks must
accommodate data from text, natural language processing, and
internet safety articles [31,70].

8. The socio-organizational perspective

Themanagement of analytics initiativesdthe people side of big-
data thinkingdis the purview of the socio-organizational
perspective. The emphasis in the socio-organizational perspec-
tive, as the name implies, is in the social and cultural nature of
safety knowledge. The goal of this perspective is the integration of
the work done by IT professionals and safety training specialists
into the work of organizational stakeholders to achieve goals of
modularity, reusability, and scalability. They inhabit the world of
management and system integration.

The following four points summarize the socio-organizational
perspective:

� Expertise: Managers need expertise in prediction of safety
incidents based on workload analysis, skill requirements cal-
culations, problem formation, operator adjustment, and other
factors [71,72].

� Challenge: A primary challenge is the building of safety cul-
ture [8,21,29]. This challenge requires “the marriage of cultural
sociology and big data” [63].
� Process: This perspective reflects the ontological impulse that
not only defines the organization as a data ecosystem, but
constitutes it [64,73,74].

� Tasks: The key task is integrating various strategic perspectives
(internal cohesion, ecosystem identity, knowledge work flows,
resource sharing protocols, data access principles, and re-
pository sharing protocols, need analyses, and evaluative and
reporting channels) on big data to facilitate OHS strategic
goals [58,73,74].
9. The knowledge organization perspective

The knowledge organization perspective on big-data analytics
emphasizes the building of knowledge capital from internal sys-
tems. Taking the broad and industry-wide view, the goal is to set
strategy for an entire safety ecosystem.Messaging from this level of
analytics should be to internal groups, such as stockholders, but
primarily to external industry stakeholders: professional organi-
zations, industry advocacy groups, financial organizations, gov-
ernment, and legal systems. Ideally knowledge organization
addresses issues that arise in competitive arenas. Knowledge or-
ganization takes the lead.

The following four points summarize the knowledge organiza-
tion perspective:

� Expertise: This evolution of strategic industrial capability (as in
Industry 4.0) sees and values digital processes, artificial intel-
ligence, data from smart devices, and the Internet of things as
central to future efficiency [32,75]. The key is to build safety
knowledge capital.

� Challenge: The challenge is to discover evidence that supports
the success for organizations in using data analytics to extract
valuable insights from big data that support strategic decision-
making [16].

� Process: Knowledge leaders must assess knowledge capital
gains from process initiatives and then communicate them to
external strategic stakeholders.

� Tasks: Organization knowledge leaders use communication
channels to articulate key strategic transactions imbricated in
enterprise-wide systems.

These four perspectives on data analytics and OHS form a con-
tinuum from data to data application to data culture to data value.
The data are identified by IT professionals, cleaned and made
available to practitioners, who apply it in programs. Managers align
the use of the knowledge to other operational units, and, over time,
executives shape instance after instance into intellectual capital
and strategic directions. But it may notwork quite this simply. To be
really effective, analytics implementations need to be integrated.
Warp speed needs to have ripples.

9.1. An integrated OHS big data analytics model

Scholars on the diffusion of innovations such as enterprise-wide
big-data analytics often point out that integrated analytics activities
require an exploratory and almost self-generating direc-
tion [61,64,66]. This exploratory direction means that by working
with open systems in a knowledge organization, all purposes
contribute to the acquisition and processing of meta-analytic data
that further energizes efficiency and production. In this somewhat
ideal scenario, a hypothesis, an innovation, an idea, a hunch (be it
made by a human, robot, or device) can trigger simultaneous rip-
ples through the big-data analytics ecosystem, leading to the pro-
ductive conclusion of hypothesized and discovered instances of



Table 3
Knowledge, skills, and attributes associated with perspectives on predictive analytics

Programmatic
perspective

Technological
perspective

Socio-
organizational
perspective

Knowledge
organization
perspective

Knowledge Deep domain
knowledge of
hazards and risks

Correlations
between
predictions and
current safety
performance

Operating systems,
platforms,
applications

Statistical modeling
and algorithm
theories

Theories of
diffusion of
technology,
culture,
organizational
integration

Organizational
models for
predictive
analytics

Broad industry and
market trends
and
opportunities

Indicators of
knowledge
capital

Skills Design, develop,
and evaluate
safety programs

Engagement with
safety
stakeholder
perspectives

Design, develop,
visualize,
support, and
evaluate
distributed
systems

Implementation of
analysis models
systematically

Communicate and
manage
integrated
systems

Change
management

Strategic planning
Transformational
leadership

Abilities Effectively
articulate safety
performance
behaviors

Create hardware
and software
integration
across units

Design and
program data
analytics
interfaces using
knowledge-
representation
schemas

Get everybody
working from the
same playbook

Lead the
organization
based on
alignment to core
values

T.T. Barker / Finding Pluto 7
safety performance. If the big-data analytics framework is a true
information ecosystem, then the sections of it will articulate in
innovative ways.

Just how the innovation of data analytics in OHS will shape and
be shaped by functional units in an organization is the next di-
rection of this exploratory article. In this final section, I posit a four-
level knowledge-skills-abilities model for analytics integration,
indicating the key capacities needed for each level. It is important
to realize that all the levels share the ability to interact with and
integrate with the other three perspectives, with the goal of
growing the data ecosystem. Table 3 summarizes the four
perspectives.

The chart in Table 3 represents a solar system of analytic
knowledge about safety performance. Although the many chal-
lenges of implementing big-data analytics that it articulates have to
do with database creation, data sources, visualization and explo-
ration, and predicting safety models for injuries, accidents, and
illnesses, equally important are considerations of control systems,
evaluation and monitoring, education and training and organiza-
tional safety performance at the individual and enterprise level.
Like all models, its application will vary from one company or or-
ganization to another, given existing knowledge, skills, and atti-
tudes. The model also has research potential as a way of organizing
inquiry and investigation into the further interrelationships among
these four key operational categories.
10. Conclusions

The introduction to this article noted the similarities in the
epistemological principles behind finding Pluto for modern as-
tronomers and finding safety performance incidents or character-
istics in the universe of organizational OHS. The following are three
key conclusions from this article:
1. The goal of predictive analytics needs to align with models of
positive safety performance rather than models of failures in
safety performance

2. The exploration of predictive analytics is essentially cultural,
beginning with quantitative data shaped to reflect qualitative
ends

3. The integration of predictive analytics looks differently against
the backdrop of industrial organizational and operation units:
each plays a part through extracting, communicating, man-
aging, and capitalizing.

The principles of data mining for leading indicators, variables,
clues, and intuitions of desired safety outcomes is a shared concern
that motivates all professionals in modern, human-resource
managed organizations. Like the bending of the solar system in
response to a gravitational change, the predictive big-data analytics
model presented here offers a way to address analytics in an inte-
grated way. Developments in our understanding of how to inte-
grate new perspectives on core safety operations can be a small
step for predictive analytics and a giant leap for OHS professionals.
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