• Title/Summary/Keyword: SURFACE CRYSTALLIZATION

Search Result 432, Processing Time 0.028 seconds

Influence of electron irradiation on the structural and optoelectronics properties of ZTZ thin films prepared by magnetron sputtering (마그네트론 스퍼터링법으로 제조된 ZTZ 박막의 구조적 전기광학적 특성에 미치는 전자빔 조사의 영향)

  • Cha, Byung-Chul;Jang, Jin-Kyu;Choi, Jin-Young;Lee, In-Sik;Kim, Dae-Wook;Kim, Yu-Sung;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.363-367
    • /
    • 2022
  • Transparent ZnO/Ti/ZnO (ZTZ) tri-layered films were prepared with radio frequency (RF) and direct current (DC) magnetron sputtering on the glass substrate. The thickness of the ZnO and Ti films was kept at 50 and 10 nm to consider the effect of the electron irradiation on the crystallization and optoelectrical properties of the films. From the XRD spectra, post-depostion electron irradiated films showed the characteristic peaks of ZnO(002) and Ti(200), respectively. the observed grain size of the ZnO(002) and Ti(200) enlarged up to 18.27 and 12.16 nm at an irradiation condition of 750 eV. In the figure of merit which means an optoelectrical performance of the films, as deposited films show a figure of merit of 2.0×10-5 𝛺-1, while the films electron irradiated at 750 eV show a higher figure of merit of 5.7×10-5 𝛺-1.

Property of Nano-thick Silicon Films Fabricated by Low Temperature Inductively Coupled Plasma Chemical Vapor Deposition Process (저온 ICP-CVD 공정으로 제조된 나노급 실리콘 박막의 물성)

  • Shen, Yun;Sim, Gapseop;Choi, Yongyoon;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • 100 nm-thick hydrogenated amorphous silicon $({\alpha}-Si:H)$ films were deposited on a glass and glass/30 nm Ni substrates by inductively-coupled plasma chemical vapor deposition (ICP-CVD) at temperatures ranging from 100 to $550^{\circ}C$. The sheet resistance, microstructure, phase transformation and surface roughness of the films were characterized using a four-point probe, AFM (atomic force microscope), TEM (transmission electron microscope), AES (Auger electron spectroscopy), HR-XRD(high resolution X-ray diffraction), and micro-Raman spectroscopy. A nano-thick NiSi phase was formed at substrate temperatures >$400^{\circ}C$. AFM confirmed that the surface roughness did not change as the substrate temperature increased, but it increased abruptly to 6.6 nm above $400^{\circ}C$ on the glass/30 nm Ni substrates. HR-XRD and micro-Raman spectroscopy showed that all the Si samples were amorphous on the glass substrates, whereas crystalline silicon appeared at $550^{\circ}C$ on the glass/30 nm Ni substrates. These results show that crystalline NiSi and Si can be prepared simultaneously on Ni-inserted substrates.

Property of Nano-thickness Nickel Silicides with Low Temperature Catalytic CVD (Catalytic CVD 저온공정으로 제조된 나노급 니켈실리사이드의 물성)

  • Choi, Yongyoon;Kim, Kunil;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.133-140
    • /
    • 2010
  • 10 nm thick Ni layers were deposited on 200 nm $SiO_2/Si$ substrates using an e-beam evaporator. Then, 60 nm or 20 nm thick ${\alpha}$-Si:H layers were grown at low temperature (<$200^{\circ}C$) by a Catalytic-CVD. NiSi layers were already formed instantaneously during Cat-CVD process regardless of the thickness of the $\alpha$-Si. The resulting changes in sheet resistance, microstructure, phase, chemical composition, and surface roughness with the additional rapid thermal annealing up to $500^{\circ}C$ were examined using a four point probe, HRXRD, FE-SEM, TEM, AES, and SPM, respectively. The sheet resistance of the NiSi layer was 12${\Omega}$/□ regardless of the thickness of the ${\alpha}$-Si and kept stable even after the additional annealing process. The thickness of the NiSi layer was 30 nm with excellent uniformity and the surface roughness was maintained under 2 nm after the annealing. Accordingly, our result implies that the low temperature Cat-CVD process with proposed films stack sequence may have more advantages than the conventional CVD process for nano scale NiSi applications.

Effect of Sodium Lignosulfonate Treatment on the Dispersion of CaCO3 in CaCo3/Polypropylene Composite (Sodium Lignosulfonate 표면처리가 탄산칼슘/폴리프로필렌 복합체에서 탄산칼슘의 분산에 미치는 영향)

  • Song, Junyoung;Kwark, Young-Je;Jeong, Youngjin
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.382-387
    • /
    • 2015
  • The dispersion of calcium carbonate ($CaCO_3$) in polypropylene (PP) and the effect of $CaCO_3$ size on the crystallinity of PP were studied. Polymer composite usually suffers from the brittleness when reinforced with inorganic fillers. The problem is generally related to the size and dispersion of fillers. First, the dispersion was studied for the nanosize $CaCO_3$ with 15~40 nm average diameter. To enhance the dispersibility in PP, the surface of the $CaCO_3$ was treated with sodium lignosulfonate (SLS). $CaCO_3$/PP composites were prepared via melt compounding. The $CaCO_3$ coated with more than 3 wt% SLS was uniformly distributed within the PP matrix, while the uncoated $CaCO_3$ formed aggregated structures in the PP. Even with 30 wt%, the SLS-$CaCO_3$ was well dispersed in the PP matrix. Also, the transition enthalpy of $CaCO_3$/PP increased and the full-width of half maximum of the crystallization peak decreased regardless of SLS coating and size of $CaCO_3$. However, the crystallinity of PP was more influenced by nano $CaCO_3$. These results imply that the nano $CaCO_3$ coated with SLS may reduce the brittleness of polymer composites.

Spalling of Intermetallic Compound during the Reaction between Electroless Ni(P) and Lead-free Solders (무전해 Ni(P)과 무연솔더와의 반응 중 금속간화합물의 spalling 현상에 관한 연구)

  • Sohn Yoon-Chul;Yu Jin;Kang S. K.;Shih D. Y,;Lee Taek-Yeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.37-45
    • /
    • 2004
  • Electroless Ni(P) has been widely used for under bump metallization (UBM) of flip chip and surface finish layer in microelectronic packaging because of its excellent solderability, corrosion resistance, uniformity, selective deposition without photo-lithography, and also good diffusion barrier. However, the brittle fracture at solder joints and the spatting of intermetallic compound (IMC) associated with electroless Ni(P) are critical issues for its successful applications. In the present study, the mechanism of IMC spatting and microstructure change of the Ni(P) film were investigated with varying P content in the Ni(P) film (4.6,9, and $13 wt.\%$P). A reaction between Sn penetrated through the channels among $Ni_3Sn_4$ IMCs and the P-rich layer ($Ni_3P$) of the Ni(P) film formed a $Ni_3SnP$ layer. Thickening of the $Ni_3SnP$ layer led to $Ni_3Sn_4$ spatting. After $Ni_3Sn_4$ spatting, the Ni(P) film directly contacted the molten solder and the $Ni_3P$ phase further transformed into a $Ni_2P$ phase. During the crystallization process, some cracks formed in the Ni(P) film to release tensile stress accumulated from volume shrinkage of the film.

  • PDF

A Study on the Low Temperature Epitaxial Growth of $CoSi_2$ Layer by Multitarget Bias cosputter Deposition and Phase Sequence (Multitarget Bias Cosputter증착에 의한 $CoSi_2$층의 저온정합성장 및 상전이에 관한 연구)

  • Park, Sang-Uk;Choe, Jeong-Dong;Gwak, Jun-Seop;Ji, Eung-Jun;Baek, Hong-Gu
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.9-23
    • /
    • 1994
  • Epitaxial $CoSi_2$ layer has been grown on NaCl(100) substrate at low deposition temperature($200^{\circ}C$) by multitarget bias cosputter deposition(MBCD). The phase sequence and crystallinity of deposited silicide as a function of deposition temperature and substrate bias voltage were studied by X-ray diffraction(XRD) and transmission electron microscopy(TEM) analysis. Crystalline Si was grown at $200^{\circ}C$ by metal induced crystallization(M1C) and self bias effect. In addition to, the MIC was analyzed both theoretically and experimentally. The observed phase sequence was $Co_2Si \to CoSi \to Cosi_2$ and was in good agreement with that predicted by effective heat of formation rule. The phase sequence, the CoSi(l11) preferred orientation, and the crystallinity had stronger dependence on the substrate bias voltage than the deposition temperature due to the collisional cascade mixing, the in-situ cleaning, and the increase in the number of nucleation sites by ion bombardment of growing surface. Grain growth induced by ion bombardment was observed with increasing substrate bias voltage at $200^{\circ}C$ and was interpreted with ion bombardment dissociation model. The parameters of $E_{Ar}\;and \alpha(V_s)$ were chosen to properly quantify the ion bombardment effect on the variation in crystallinty at $200^{\circ}C$ with increasing substrate bias voltage using Langmuir probe.

  • PDF

A Study on Synthesis Process of Zeolite 4A for Improvement of Properties as a Detergent Builder (세제 빌더용 제올라이트 4A의 물성 향상을 위한 합성공정 연구)

  • Cho, Yong-Sik;Lee, Won-Young;Hong, Ji-Sook;Suh, Jeong-Kwon;Ryu, Seung-Kon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.488-494
    • /
    • 2009
  • Zeolite 4A was prepared by new synthesis method, 2-step crystallization, for enhancement of oil absorption capacity. Vietnamese sand and $NaAlO_2$ solution from natural bauxite were used as raw materials in stead of conventional cullet and $Al(OH)_3$ to reduced the processing cost. Some dissolved organics in $NaAlO_2$ solution were removed by activated carbon. Synthetic method was progressed by 1) reacting the raw materials at $55^{\circ}C$, 4 hr with the ratio of Si/Al to 1.15, and 2) reacting at $65^{\circ}C$, 5 hr with reducing the ratio of Si/Al to 0.98. New method can easily control the particle size, aggregation, surface polarity, and enhanced the whiteness of the products. The prepared zeolite 4A shows excellent oil absorption capacity(O.A.C>50 ml/100 g) as well as equal value with calcium ion exchange capacity, and proves the 2-step crystallization is the economic and effective process for the preparation of zeolite 4A.

Fabrication and Characterization of the Carbon Fiber Composite Sheets (탄소섬유를 이용한 열가소성 복합재료 시트 제조 및 특성)

  • Lee, Yun-Seon;Song, Seung-A;Kim, Wan Jin;Kim, Seong-Su;Jung, Yong-Sik
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.168-175
    • /
    • 2015
  • Recently, the applications of carbon fiber reinforced plastics (CFRPs) have become broader than ever when it comes to such industries as automotive, ships, aerospace and military because of their lightweight-ness and high mechanical properties. Thermosetting plastics like epoxy are frequently used as the binding matrix in CFRPs due to their high hardness, wetting characteristics and low viscosity. However, they cannot melted and remolded. For this reason, thermosetting plastic wastes have caused serious environmental problems with the production of fiber reinforced plastics. Thus, many studies have focused on the carbon fiber reinforced thermoplastics (CFRTPs) and recycling carbon fiber. In this study, recycled carbon fiber (RCF) was prepared from CFRPs using a pyrolysis method, which was employed to separate resin and carbon fiber. The degree of decomposition for epoxy resin was confirmed from thermal gravimetric analysis (TGA) and scanning electron microscope (SEM). The RCF was cut and ground to prepare a carbon fiber composite sheet (CFCS). CFCS was manufactured by applying recycled carbon fibers and various thermoplastic fibers. Various characterizations were performed, including morphological analyses of surface and cross-section, mechanical properties, and crystallization enthalpy of CFCS at different cooling conditions.

Synthesis and Crystallization of Amorphous Calcium Carbonate by Gas-Liquid Reaction of System Ca($OH_2 O$)-$H_2$-$CO_2$ (Ca($OH_2$)-$H_2 O$-$CO_2$계의 기액반응으로부터 비정질 탄산칼슘의 합성 및 결정화)

  • Im, Jae-Seok;Kim, Ga-Yeon;Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.73-87
    • /
    • 2004
  • The synthesis and crystallization of amorphous calcium carbonate($CaCO_3$.$nH_2 O$) obtained from gas-liquid reaction between aqueous solution of calcium hydroxide and carbon dioxide at 15~$50^{\circ}C$ are investigated by electrical conductometry, XRD and TEM. The results are as follows: The initial reaction products prior to the formation of precipitated calcium carbonate is amorphous calcium carbonate. The electrical conductivity values in the slurry are decreased during the formation of amorphous calcium carbonate which covers particle surface of calcium hydroxide and retard the dissolution of calcium hydroxide into the solution. that amorphous calcium carbonate is unstable in the aqueous solution and crystallizes finally to calcite by the through-solution reaction. While amorphous calcium carbonate crystallizes into chain-like calcite, the conductivity values are recovered rapidly and the apparent viscosity of slurry containing higher concentration of calcium hydroxide increase. At below pH 9.5, chain-like calcite separates into individual particles to form precipitated calcium carbonate. The formation and synthetic temperature range of amorphous calcium carbonate is most suitable a primary decreasing step(a-step) at $15^{\circ}C$ in the electrical conductometry.

  • PDF

Effect of Styrene and Maleic Anhydride Content on Properties of PP/Pulp Composites and Reactive Extrusion of Random PP (랜덤 PP의 반응압출 및 PP/Pulp 복합체 특성에 대한 스티렌과 무수말레인산 함량의 영향)

  • Lee, Jong Won;Kim, Ji Hyun;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.318-323
    • /
    • 2014
  • In order to analyze the effect of maleic anhydride (MAH) content and styrene monomer (SM)/MAH mole ratio on reactive extrusion of maleic anhydride grafted random polypropylenes (MAH-g-rPP), MAH-g-rPPs were prepared by using a twin screw extruder. MAH contents were 0.5, 1.0, 3.0, and 5.0 phr and SM/initiator mole ratio was 0.0, 1.0, and 2.0. Dicumyl peroxide (DCP) was used as an initiator. The graft degree of MAH was confirmed by the existence of carbonyl group (C = O) stretching peak at $1700cm^{-1}$ from FT-IR spectrum. The degree of graft reaction increased up to 3.0 phr MAH and showed the optimum value at 1.0 SM/MAH mole ratio from the area ratio of C = O and C-H stretching peak. Thermal and crystallization properties of MAH-g-rPP and PP/MAH-g-rPP/pulp composites were investigated by DSC, TGA, XRD, and POM. There was a decrease in non-isothermal crystallization temperature of PP/MAH-g-PP/pulp composites. Based on tensile properties and SEM pictures for the fractured surface of PP/MAH-g-PP/pulp composites, MAH content of 1.0 wt% and SM/MAH mole ratio of 1.0 were the optimum formulation as the compatibilizer. The rheological properties of the composites were measured by dynamic Rheometer to compare the processability of the composites with and without compatibilizer. The power law index showed slightly low value at the composites with compatibilizer.