• Title/Summary/Keyword: SU/PG model

Search Result 17, Processing Time 0.036 seconds

SU/PG Model Evaluation for river dynamics (자연하천 해석을 위한 SU/PG 모형의 개발)

  • Han, Kun Yeun;Park, Kyung Ok;Baek, Chang Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1331-1334
    • /
    • 2004
  • Wet/Dry phenomena typically incorporate a number of complex flow mechanism. These include a momentum transfer and turbulent mixing caused by the delivery of water. However currently available one dimensional schemes applicable to wet/dry process cannot effectively simulate such process. Two dimensional finite element model, SU/PG, is used to simulate complex flow in this study. The Wetted Area Method in SU/PG allows elements to transition gradually between wet and dry states. The model is applicable to a straight river reach with irregular bathymetry. Wet/dry calculation using the wetted area method can simulate simple numerical test. The computed results of velocity vectors and water depth agree with those of observed. The methodology Presented in this study will contributed to two-dimensional wet/dry analysis in a river in this country.

  • PDF

Numerical Simulation of Convection-dominated Flow Using SU/PG Scheme (SU/PG 기법을 이용한 이송이 지배적인 흐름 수치모의)

  • Song, Chang Geun;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3B
    • /
    • pp.175-183
    • /
    • 2012
  • In this study, Galerkin scheme and SU/PG scheme of Petrov-Galerkin family were applied to the shallow water equations and a finite element model for shallow water flow was developed. Numerical simulations were conducted in several flumes with convection-dominated flow condition. Flow simulation of channel with slender structure in the water course revealed that Galerkin and SU/PG schemes showed similar results under very low Fr number and Re number condition. However, when the Fr number increased up to 1.58, Galerkin scheme did not converge while SU/PG scheme produced stable solutions after 5 iterations by Newton-Raphson method. For the transcritical flow simulation in diverging channel, the present model predicted the hydraulic jump accurately in terms of the jump location, the depth slope, and the flow depth after jump, and the numerical results showed good agreements with the hydraulic experiments carried out by Khalifa(1980). In the oblique hydraulic jump simulation, in which convection-dominated supercritical flow (Fr=2.74) evolves, Galerkin scheme blew up just after the first iteration of the initial time step. However, SU/PG scheme captured the boundary of oblique hydraulic jump accurately without numerical oscillation. The maximum errors quantified with exact solutions were less than 0.2% in water depth and velocity calculations, and thereby SU/PG scheme predicted the oblique hydraulic jump phenomena more accurately compared with the previous studies (Levin et al., 2006; Ricchiuto et al., 2007).

Numerical Simulation of Dam-Break Problem Using SU/PG Scheme (SU/PG 기법을 이용한 댐붕괴 수치모의)

  • Seo, Il Won;Song, Chang Geun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.198-198
    • /
    • 2011
  • The numerical simulation of dam break problem suffers from several challenges in terms of accuracy, stability, and versatility of the simulation algorithm since the water flow is generally discontinuous and presents abrupt variations. Thus, to obtain stable and accurate solutions, flow models for this purpose require numerical schemes provided with shock-capturing properties, and with the ability to work with flexible two-dimensional meshes. In this context, SU/PG method(Hughes and Brooks, 1979) is excellent candidate for the solution of the dam break problem. The weak formulation of the equations and the discontinuous polynomial basis lead to an accurate representation of bore waves(shocks). Furthermore, the discretization of the domain in finite elements is extremely effective in modeling complex geometries. In this study, a finite element model based on the SU/PG scheme is developed to solve shallow water equations and the model is applied to dam break problem. It is found that the present model accurately captures the bore wave that propagates downstream while spreading laterally and the depression wave that moves upstream. Furthermore, the propagation and formation of water surface profile compared favorably with those obtained by the previously published results.

  • PDF

2D Finite Element Modeling of Bed Elevation Change in a Curved Channel (유한요소법을 이용한 만곡수로에서의 2차원 하상변동 수치모형)

  • Kim Tae Beom;Choi Sung-Uk;Min Kyung Duck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.414-418
    • /
    • 2005
  • A finite element model is developed for the numerical simulation of bed elevation change in a curved channel. The SU/PG (Streamline-Upwind/Petrov-Galerkin) method is used to solve 2D shallow water equations and the BG (Bubnov-Galerkin) method is used for the Exner equation. For the time derivative terms, the Crank-Nicolson scheme is used. The developed model is a decoupled model in a sense that the bed elevation does not change simultaneously with the flow during the computational time step. The total load formula with is used for the sediment transport model. The slip conditions are described along the lateral boundaries. The effects of gravity force due to geometry change and the secondary flows in a curved channel are considered in the model. For the verification, the model is applied to two laboratory experiments. The first is $140^{\circ}$ bended channel data at Delft Hydraulics Laboratory and the second is $140^{\circ}$ bended channel data at Laboratory of Fluid Mechanics of the Delft University of Technology. The finite element grid is constructed with linear quadrilateral elements. It is found that the computed results are in good agreement with measured data, showing a point bar at the inner bank and a pool at the outer bank.

  • PDF

Two-Dimensional River Flow Analysis Modeling By Finite Element Method (유한요소법에 의한 2차원 하천 흐름 모형의 개발)

  • Han, Kun-Yeun;Kim, Sang-Ho;Kim, Byung-Hyun;Choi, Seung-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.425-429
    • /
    • 2006
  • The understanding and prediction of the behavior of flow in open channels are important to the solution of a wide variety of practical flow problems in water resources engineering. Recently, frequent drought has increased the necessity of an effective water resources control and management of river flows for reserving instream flow. The objective of this study is to develop an efficient and accurate finite element model based on Streamline Upwind/Petrov-Galerkin(SU/PG) scheme for analyzing and predicting two dimensional flow features in complex natural rivers. Several tests were performed in developed all elements(4-Node, 6-Node, 8-Node elements) for the purpose of validation and verification of the developed model. The U-shaped channel of flow and natural river of flow were performed for tests. The results were compared with these of laboratory experiments and RMA-2 model. Such results showed that solutions of high order elements were better accurate and improved than those of linear elements. Also, the suggested model displayed reasonable velocity distribution compare to RMA-2 model in meandering domain for application of natural river flow. Accordingly, the developed finite element model is feasible and produces reliable results for simulation of two dimensional natural river flow. Also, One contribution of this study is to present that results can lead to significant gain in analyzing the accurate flow behavior associated with hydraulic structure such as weir and water intake station and flow of chute and pool.

  • PDF

Analysis of Velocity Structures and Shear Stresses by Parameters and Internal Boundary Conditions of Depth-averaged Flow Model (수심평균 유동 모형의 매개변수와 내부 경계조건에 따른 유속구조 및 전단력 분석)

  • Song, Chang Geun;Woo, In Sung;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.54-60
    • /
    • 2013
  • In this study, a finite element model based on the SU/PG scheme was developed to solve shallow-water equations and the influences of parameters and internal boundary conditions on depth-averaged flow behavior were investigated. To analyze the effect of roughness coefficient and eddy viscosity on flow characteristics, the developed model was applied to rectangular meandering channel with two bends, and transverse velocities and water depth distributions were examined. As the roughness coefficient adjacent to wall increased, the velocities near the wall decreased, and the reduced velocities were compensated by the expanding mid-channel velocities. In addition, the flow characteristics around a circular cylinder were analyzed by varying the internal boundary conditions as free slip and no slip. The assignment of slip condition changed the velocity distribution on the cylinder surface and reduced the magnitude of the shear stress up to one third.

2-D SU/PG Finite Element Model Using Quadratic Elements (2차 요소를 이용한 2차원 상향가중 유한요소모형)

  • Choi, Seung-Yong;Kim, Byung-Hyun;Kim, Sang-Ho;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1053-1067
    • /
    • 2009
  • The objective of this study is to develop an efficient and accurate quadratic finite element model based on Streamline Upwind/Petrov Galerkin (SU/PG) scheme for analyzing and predicting two dimensional flow features in complex natural rivers. For a development of model, quadratic tin, quadrilateral and mixed elements as well as linear tin, quadrilateral and mixed elements were used in the model. Also, this model was developed through reinforcement of Gauss Quadrature which was necessary to integral of governing equation. Several tests for bottom-rising channel and U-type channel were performed for the purpose of validation and verification of the developed model. Such results showed that solutions of second order elements are better accurate and improved than those of linear elements. Results obtained by the developed model and RMA-2 model are compared, and the results for the developed model were better accurate than those of RMA-2 model. In the future if the developed model is applied in natural rivers, it can provide better accurate results than those of existing model.

Analysis of Magnitude and Rate-of-rise of VFTO in 550 kV GIS using EMTP-RV

  • Seo, Hun-Chul;Jang, Won-Hyeok;Kim, Chul-Hwan;Chung, Young-Hwan;Lee, Dong-Su;Rhee, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • Very Fast Transients (VFT) originate mainly from disconnector switching operations in Gas Insulated Substations (GIS). In order to determine the rate-of-rise of Very Fast Transient Overvoltage (VFTO) in a 550 kV GIS, simulations are carried out using EMTP-RV. Each component of the GIS is modeled by distributed line model and lumped model based on equivalent circuits. The various switching conditions according to closing point-on-wave and trapped charge are simulated, and the results are analyzed. Also, the analysis of travelling wave using a lattice diagram is conducted to verify the simulation results.

Development of Depth-averaged Mixing Length Turbulence Model and Assessment of Eddy Viscosity (수심평균 혼합거리 난류 모형의 개발 및 와점성계수의 평가)

  • Choi, Seung-Yong;Han, Kun-Yeun;Hwang, Jae-Hong
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.395-409
    • /
    • 2011
  • The objective of this study is to develop an accurate and robust two-dimensional finite element method for turbulence simulation in open channels. The model is based on Streamline Upwind/Petrov-Galerkin finite element method and Boussinesq's eddy viscosity theory. The method developed in the study is depth-averaged mixing length model which assumes anisotropic and local equilibrium state of turbulence. The model calibration and validation were performed by comparing with analytical solutions and observed data. Several numerical simulations were carried out, which examined the performance of the turbulence model for the purpose of sensitivity analysis. The uniform channels that appear horizontal flow and vertical flow were carried out. The model was also applied to the Han river was in for the applicability test. The results were compared with the observed data. The suggested model displayed reasonable flow distribution compare to the observed data in natural river flow. As a result of this study, the two-dimensional finite element model provides a reliable results for flow distribution based on the turbulence simulation in open channels.

Development of Three-Dimensional Finite Element Model Using Upwind Weighting Scheme for River Flow (하천흐름해석을 위한 상향가중의 3차원 유한요소모형 개발)

  • Han, Kun-Yeun;Baek, Chang-Hyun;Choi, Seung-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.409-413
    • /
    • 2005
  • Even though the relative importance of length scale of flow system allow us to simplify three dimensional flow problem to one or two dimensional representation, many systems still require three dimensional analysis. The objective of this study is to develop an efficient and accurate finite element model for analyzing and predicting three dimensional flow features in natural rivers and to offend to model spreading of pollutants and transport of sediments in the future. Firstly, three dimensional Reynolds averaged Navier-Stokes equations with the hydrostatic pressure assumption in generalized curvilinear coordinates were combined with the kinematic free-surface condition. Secondly. to simulate realistic high Reynolds number flow, the model employed the Streamline Upwind/Petrov-Galerkin(SU/PG) scheme as a weighting function for the finite element method in conjunction with an appropriate turbulence model(Smagorinsky scheme for the horizontal plain and Mellor-Yamada scheme for the vertical direction). Several tests is performed for the purpose of validation and verification of the developed model. A simple rectangular channel, 5-shaped and U-shaped channel are used for tests and comparisons are made with RMA-10 model. Runs for each case is converged stably without a oscillation and calculated water-surface deformation, longitudinal and transversal velocities, and velocity vector fields are in good agreement with the results of RMA-10 model.

  • PDF