DOI QR코드

DOI QR Code

Numerical Simulation of Convection-dominated Flow Using SU/PG Scheme

SU/PG 기법을 이용한 이송이 지배적인 흐름 수치모의

  • 송창근 (서울대학교 건설환경공학부) ;
  • 서일원 (서울대학교 건설환경공학부)
  • Received : 2011.11.24
  • Accepted : 2012.04.25
  • Published : 2012.06.30

Abstract

In this study, Galerkin scheme and SU/PG scheme of Petrov-Galerkin family were applied to the shallow water equations and a finite element model for shallow water flow was developed. Numerical simulations were conducted in several flumes with convection-dominated flow condition. Flow simulation of channel with slender structure in the water course revealed that Galerkin and SU/PG schemes showed similar results under very low Fr number and Re number condition. However, when the Fr number increased up to 1.58, Galerkin scheme did not converge while SU/PG scheme produced stable solutions after 5 iterations by Newton-Raphson method. For the transcritical flow simulation in diverging channel, the present model predicted the hydraulic jump accurately in terms of the jump location, the depth slope, and the flow depth after jump, and the numerical results showed good agreements with the hydraulic experiments carried out by Khalifa(1980). In the oblique hydraulic jump simulation, in which convection-dominated supercritical flow (Fr=2.74) evolves, Galerkin scheme blew up just after the first iteration of the initial time step. However, SU/PG scheme captured the boundary of oblique hydraulic jump accurately without numerical oscillation. The maximum errors quantified with exact solutions were less than 0.2% in water depth and velocity calculations, and thereby SU/PG scheme predicted the oblique hydraulic jump phenomena more accurately compared with the previous studies (Levin et al., 2006; Ricchiuto et al., 2007).

본 연구에서는 천수방정식에 Galerkin법과 Petrov-Galerkin 기법의 일종인 SU/PG 기법을 적용하여 유한요소 천수흐름 해석 모형을 개발하고, 다양한 실험수로에서 이송이 지배적인 흐름을 수치 모의하였다. 수로 내부에 얇은 판 형태의 구조물이 존재하는 경우 Fr 수와 Re 수가 매우 낮은 흐름에서는 Galerkin 기법과 SU/PG 기법이 동일한 결과를 나타냈으나, Fr=1.58인 경우 Galerkin법은 발산하여 해를 얻을 수 없었다. 이 경우 SU/PG법은 Newton-Raphson법에 의한 5회의 반복에 의해 수렴된 유속결과를 구할 수 있었다. 사류와 상류가 혼재하여 천이류가 나타나는 단면확대 수로 모의에서 SU/PG 기법을 이용한 본 연구의 경우 상류단 수심조건이 잘 유지되며, 도수가 발생하는 지점 및 도수에 의한 수심 경사, 도수 후의 수심이 모두 Khalifa(1980)의 실험결과와 매우 근사하였다. 이송이 지배적인 사류(Fr=2.74)에 의한 사각도수 모의의 경우에도 Galerkin 기법은 최초 모의시간의 첫 번째 반복 이후 발산하였으나, SU/PG 기법은 도수 경계면을 수치진동 없이 잘 포착하였으며, 해석해와 비교한 수심 및 유속의 최대 오차는 0.2% 이내로 나타나 기존 연구(Levin 등, 2006; Ricchiuto 등, 2007)에 비해 더욱 정확한 결과를 도출하였다.

Keywords

References

  1. 김태범, 최성욱, 민경덕(2006) CDG 유한요소법을 이용한 수심적분 흐름의 수치모의. 대한토목학회논문집, 대한토목학회, 제26권 제5B호, pp. 447-457.
  2. 서일원, 송창근(2010) 천수흐름 해석을 위한 2차원 유한요소모형의 개발. 대한토목학회논문집, 대한토목학회, 제30권 제2B호, pp. 199-209.
  3. 윤태훈(1982) 유한요소법에 의한 항만에서의 토사이송추정모형. 대한토목학회논문집, 대한토목학회, 제2권 제2호, pp. 19-28.
  4. 한건연, 박경옥, 백창현, 최규현(2005) SU/PG 기법에 의한 2차원 하천 동수역학 해석. 대한토목학회논문집, 대한토목학회, 제25권 제2B호, pp. 89-96.
  5. Akin, J.E. and Tezduyar, T.E. (1996) A symmetric formulation and SU/PG scheme for the shallow-water equations, Comput. Methods Appl. Mech. Engrg., Vol. 193, pp. 1909-1922.
  6. Alcrudo, F. and Garcia-Navarro, P. (1993) A high-resolution Godunovtype scheme in finite volumes for the 2D shallow-water equations, Int. J. Numer. Methods Fluids, Vol. 16, pp. 489-505. https://doi.org/10.1002/fld.1650160604
  7. Berger, R.C. and Stockstill, R.L. (1995) Finite-element model for high-velocity channels, J. Hydraul. Engrg., Vol. 121, No. 10, pp. 710-716. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:10(710)
  8. Bova, S.W. and Carey, G.F. (1996) A symmetric formulation and SU/PG scheme for the shallow-water equations, Adv. Water Resour., Vol. 19, No. 3, pp 123-131. https://doi.org/10.1016/0309-1708(95)00040-2
  9. Brooks, A.N. and Hughes, T.J.R. (1982) Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations, Comput. Methods Appl. Mech. Engrg., Vol. 32, pp. 199-259. https://doi.org/10.1016/0045-7825(82)90071-8
  10. Chow, V.T. (1973) Open channel hydraulics, McGraw Hill.
  11. Ghanem, A.H.M. (1995) Two-dimensional finite element modeling of flow in aquatic babitats. Ph.D. Thesis, University of Alberta, Edmonton, Alberta.
  12. Hicks, F.E. and Steffler, P.M. (1992) Characteristic dissipative Galerkin scheme for open channel flow, J. Hydraul. Engrg., Vol. 118, No. 2, pp. 337-352. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:2(337)
  13. Hicks, F.E. and Steffler, P.M. (1994) Comparison of finite element methods for the St. Venant equations, Int. J. Numer. Methods Fluids, Vol. 20, pp. 99-113.
  14. Katopodes, N.D. (1984a) A dissipative Galerkin scheme for openchannel flow, J. Hydraul. Engrg., Vol. 110, No. 4, pp. 450-466. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:4(450)
  15. Katopodes, N.D. (1984b) Two-dimensional surges and shocks in open channels, J. Hydraul. Engrg., Vol. 110, No. 6, pp. 794-812. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:6(794)
  16. Katopodes, N.D. (1984c) A Fourier analysis of dissipative FEM channel flow model, J. Hydraul. Engrg., Vol. 110, No. 7, pp. 927-944. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:7(927)
  17. Khalifa, A. (1980) Theoretical and experimental study of the radial hydraulic jump, Ph.D. dissertation, University of Windsor, Windsor, Ontario, Canada.
  18. Levin, J.C., Iskandarani, M., and Haidvogel, D.B. (2006) To continue or discontinue: Comparisons of continuous and discontinuous Galerkin formulations in a spectral element ocean model, Ocean Modelling, Vol. 15, pp. 56-70. https://doi.org/10.1016/j.ocemod.2005.10.001
  19. Lienhard, J.H. (1996). Synopsis of lift, drag, and vortex frequency data for rigid circular cylinder, Bulletin 300, Washington State University.
  20. Ricchiuto, M., Abgrall, R., and Deconinck, H. (2007) Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes, J. Comput. Phys., Vol. 222, pp. 287-331. https://doi.org/10.1016/j.jcp.2006.06.024
  21. Seo, I.W. and Song, C.G. (2011) Numerical simulation of laminar flow past a circular cylinder with slip conditions, Int. J. Numer. Methods Fluids, Vol. 68, No. 12, pp. 1538-1560.
  22. Vreugdebhil, C.B. (1994) Numerical method for shallow water flow, Kluwer Academic Publishers, Amsterdam.
  23. Younus, M. and M. Hanif Chaudhry, M.H. (1994) A depth-averaged turbulence model for the computation of free-surface flow, J. Hydraulic Res., Vol. 32, No. 3, pp. 415-444. https://doi.org/10.1080/00221689409498744
  24. Yu, C.C. and Heinrich, J.C. (1987) Petrov-Galerkin method for multidimensional, time-dependent, convective-diffusion equation, Int. J. Numer. Methods Engrg., Vol. 24, pp. 2201-2215. https://doi.org/10.1002/nme.1620241112