• Title/Summary/Keyword: STZ-induced diabetes

Search Result 413, Processing Time 0.022 seconds

Antioxidative Effect of Ethanol Extract on Arctium lappa root in Streptozotocin Induced Diabetic Rats (우엉 뿌리 에탄올 추출물이 Streptozotocin으로 유발된 당뇨 흰쥐의 항산화에 미치는 영향)

  • Kim, Ok-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.435-440
    • /
    • 2016
  • This study was carried to investigate the antioxidative effect of ethanol extract of Arctium lappa(Al) root in Streptozotocin(STZ)-induced diabetic rats. Diabetes was induced by intravenous injection of STZ at a dose of 45mg/kg.body wight(b.w) dissolved in citrate buffer. The ethanol extract of Al root was orally administrated once a day for 7 days at a dose of 1,000mg/kg.b.w. The contents of malondialdehyde(MDA) and activities of catalase (CAT), glutathione peroxidase(GSH-Px) were significantly decreased(p<0.05) in Al treated group compared to the those of STZ-control group. The content of glutathione(GSH) and activity of glutathione-s-transferase(GST) was significantly increased(p<0.05). These results indicated that ethanol extract of Al root would have antioxidative effect in STZ-induced diabetic rats.

Antidiabetic effect of ethanol extract on Codonopsis lanceolata root in streptozotocin induced diabetic rats (더덕 뿌리 에탄올 추출물이 streptozotocin으로 유발된 흰쥐의 항 당뇨효과)

  • Kim, Ok-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.271-277
    • /
    • 2016
  • This study was done to investigate the antidiabetic effect of ethanol extract from Codonopsis lanceolata root in Streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intravenous injection of STZ at a dose 45mg/kg.b.w. dissolved in citrate buffer(pH4.5). The ethanol extract of Codonopsis lanceolata root was orally administrated once a day for 7 days. The contents of serum glucose, triglyceride(TG) and total cholesterol were significantly decreased(p<0.05) in Codonopsis lanceolata root treated group compared to the those of STZ-control group. Also the content of hepatic glycogen and activities of glucose-phosphate dehydrogenase(G-6-PDH) and glucokinase(GK) were significamtly increased(p<0.05). These results indicated that ethanol extract of Codonopsis lanceolata root would have antidiabetic effect in STZ-induced diabetic rats.

The Effect of Platycodon grandiflorum Root Ethanol Extract on Blood Glucose, Lipid, Activities of Carbohydrate Metabolism Related Enzyme in Streptozotocin-Induced Diabetic Rats (도라지 뿌리 에탄올 추출물이 streptozotocin으로 유발된 흰쥐의 혈당지질, 당대사에 미치는 영향)

  • Kim, Ok-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.686-692
    • /
    • 2016
  • This study was done to investigate the antidiabetic effect of ethanol extract from Platycodon grandiflorum root in Streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by intravenous injection of STZ at a dose 45mg/kg.b.w. dissolved in citrate buffer(pH4.5). The ethanol extract of Platycodon grandiflorum root was orally administrated once a day for 7 days. The contents of serum glucose, triglyceride(TG) and total cholesterol were significantly decreased(p<0.05) in Platycodon grandiflorumt root treated group compared to the those of STZ-control group. Also the contents of hepatic glycogen and HDL-cholesterol, the activities of glucose-phosphate dehydrogenase(G-6-PDH) and glucokinase(GK) were significamtly increased (p<0.05). These results indicated that ethanol extract of Platycodon grandiflorum root would have antidiabetic effect in STZ-induced diabetic rats.

Artemisia annua L. Extracts Improved Insulin Resistance via Changing Adiponectin, Leptin and Resistin Production in HFD/STZ Diabetic Mice

  • Ghanbari, Mahshid;Lamuki, Mohammad Shokrzadeh;Habibi, Emran;Sadeghimahalli, Forouzan
    • Journal of Pharmacopuncture
    • /
    • v.25 no.2
    • /
    • pp.130-137
    • /
    • 2022
  • Objectives: Insulin resistance (IR) is major cause of type 2 diabetes (T2D), and adipokines (e.g., adiponectin, leptin, and resistin) play an important role in insulin sensitivity. Medicinal plants are frequently used for T2D treatment. This study investigates the effect of Artemisia annua L. (AA) extracts on adipokines in mice with high-fat-diet (HFD)/streptozotocin (STZ)-induced T2D. Methods: We divided 60 mice into 12 groups (n = 5 per group): control, untreated T2D, treated T2D, and 9 other groups. T2D was induced in all groups, except controls, by 8 weeks of HFD and STZ injection. The treated T2D group was administered 250 mg/kg of metformin (MTF), while the nine other groups were treated with 100, 200, and 400 mg/kg of hot-water extract (HWE), cold-water extract (CWE), and alcoholic extract (ALE) of AA (daily oral gavage) along with 250 mg/kg of MTF for 4 weeks. The intraperitoneal glucose tolerance test (IPGTT) was performed, and the homeostasis model assessment of adiponectin (HOMA-AD) index and blood glucose and serum insulin, leptin, adiponectin, and resistin levels were measured. Results: Similar to MTF, all three types of AA extracts (HWEs, CWEs, and ALEs) significantly (p < 0.0001) decreased the area under the curve (AUC) of glucose during the IPGTT, the HOMA-AD index, blood glucose levels, and serum insulin, leptin, and resistin levels and increased serum adiponectin levels in the MTF group compared to the T2D group (p < 0.0001). The HWEs affected adipokine release, while the CWEs and ALEs decreased leptin and resistin production. Conclusion: Water and alcoholic AA extracts have an antihyperglycemic and antihyperinsulinemic effect on HFD/STZ diabetic mice. In addition, they decrease IR by reducing leptin and resistin production and increasing adiponectin secretion from adipocytes.

Proteomic Analysis of Pancreata from Mini-Pigs Treated with Streptozotocin as Type I Diabetes Models

  • Lee, Phil-Young;Park, Sung-Goo;Kim, Eun-Young;Lee, Myung-Sup;Chung, Sang-J.;Lee, Sang-Chul;Yu, Dae-Yeul;Bae, Kwang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.817-820
    • /
    • 2010
  • Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by extreme insulin deficiency due to an overall reduction in the mass of functional pancreatic ${\beta}$-cells. Several animal models have been used to study T1DM. Amongst these, the mini-pig seems to be the most ideal model for diabetes research, owing to similarities with humans in anatomy and physiology. The purpose of this study was to analyze differentially expressed pancreatic proteins in a streptozotocin (STZ)-induced mini-pig T1DM model. Pancreas proteins from mini-pigs treated with STZ were separated by two-dimensional gel electrophoresis, and 11 protein spots were found to be altered significantly when compared with control mini-pigs. The data in this study utilizing proteomic analysis provide a valuable resource for the further understanding of the T1DM pathomechanism.

Development of Animal Model for Diabetes and Hyperlipidemia (당뇨병-고지혈증 모델동물의 개발)

  • Oh Seung Hyun;Roh Kyung-Jin;Park In-Sun;Min Bon Hong;Doo Ho-Kyung;Ahn Se Young;Kim Yong Suk;Seong Je Kyung
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.3
    • /
    • pp.287-294
    • /
    • 2004
  • Diabetic complication is one of major risk factors leading to vascular disease such as atherosclerosis, stroke, coronary heart disease and etc. Several factors affecting the acceleration of diabetic vascular complication have been known such as hypertension, hyperlipidemia, immune complex and genetic factors. To screen and develop new therapeutics agents for diabetic vascular complication, it is strongly needed to develop animal models for diabetic complications. However in rodents models, diabetic complications is not well developed. Furthermore to assess the possibility of new therapeutics for diabetic vascular complications, diabetic animal models which have the risk factors of diabetic complications is needed. We aim to develop and establish an diabetic animal model which have diabetic complications with hyperlipidemia which is one of risk factors for diabetic complications. We induced insulin -dependent diabetes by intra. venous injection of streptozotocin (35 mg/kg/day) in RICO rats which is a spontaneous animal model for hyperlipidemia. Our models (STZ RICO) showed hyperglycemia, persistent high level of plasma cholesterol and triglyceridemia with severe diabetic renal changes until 28 weeks after induction of diabetes. STZ-RICO rats could be used for the evaluations of newly developed diabetic drugs.

Effect of the Streptozotocin Induced Diabetes in the Rat Submandibular Glands (Streptozotocin유도 당뇨병이 백서 악하선에 미치는 영향에 관한 병리조직학적 연구)

  • Hung-Mo Kim;Jung-Pyo Hong
    • Journal of Oral Medicine and Pain
    • /
    • v.19 no.1
    • /
    • pp.45-55
    • /
    • 1994
  • The purpose of this study was to observe the microscopic change of salivary gland tissues, which is the cause of xerostomia in diabetic condition: for this target the author injected STZ 0.1ml/100gm b.w. on rat to produce diabetes, and than observed microscopic change in submandibular gland through the histopathologic method, obtaining as follows : 1. All of the experimental specimens suffered diabetes after injection of STZ, but the blood glucose level was irregular. 2. There were not interrelationship between the blood glucose level and microscopic change on salivary gland tissues. 3. The salivary gland changed after diabetes initiation in lapse of times; after 14 days,suffered severe destruction, however after 17 days, it was regenerated. 4. Salivary glands showed congested, destructive acini cells, and hyperplastic ductal cells as well as salivary gland duct-like structures. 5. Then were accumulation of fat granules within the cytoplasm of the acini cells on mucous gland in diabetic condition. 6. According to insulin injection, there were no more changes on salivary gland tissues, even in the accumulation of fat granules. 7. Histological changes of the serous gland were obvious more than the mucous gland in this experimental condition.

  • PDF

Hepatoprotective and Anti-diabetic Effects of Pelvetia siliquosa, a Marine Algae, in Rats

  • Lee, Yeon-Sil;Jung, Sang-Hoon;Lee, Sang-Hyun;Choi, Yong-Jo;Shin, Kuk-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.10 no.3
    • /
    • pp.165-169
    • /
    • 2002
  • The effects of various fractions from the whole plant of Pelvetia siliquosa Tseng et Chang (Fucaceae) on the $CCl_4$-induced hepatotoxicity as well as on streptozotocin (STZ)-induced diabetes in rats were investigated. The ether fraction exhibited a potent rat lens aldose reductase (RLAR) inhibition in vitro and showed a significant inhibition of not only serum glucose concentrations but also sorbitol accumulations in the lens, red blood cells and sciatic nerves in the STZ-induced diabetic rats. When administered orally in Sprague-Dawley rats, $H_{2}O$ fraction was found to cause a significant inhibition of the rise in the serum transaminase activities in $CCl_4$-intoxicated rats. These results suggested that this plant might possess constituents with hepatoprotective, anti-diabetic effects and those effects on diabetic complications.

Effects of Onion Kimchi Extract Supplementation on Blood Glucose and Serum Lipid Contents in Streptozotocin-induced Diabetic Rats (양파김치 추출물 투여가 Streptozotocin 유발 당뇨병 흰쥐의 혈당강하 및 혈중지질 함량에 미치는 영향)

  • Yang, Ya-Ru;Kim, Hag-Lyeol;Park, Yang-Kyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.4
    • /
    • pp.445-451
    • /
    • 2008
  • The purpose of this study was carried out to examine the effects of onion kimchi extract supplementation on blood glucose level and serum lipid components in streptozotocin (STZ)-induced diabetic rats for 4 weeks. STZ was administered as a single dose (50 mg/kg BW) to induce diabetes, and the diabetic rats were divided into eight groups (normal, diabetic control, and six treatment groups). The dose of onion kimchi extract 100 (OK-100), 200 (OK-200), and 400 (OK-400) mg/kg/day or quercetin as a main compound of onion 5 (Q-5), 10 (Q-10), and 20 (Q-20) mg/kg/day were orally administered daily to STZ-induced diabetic rats for 4 weeks after STZ injection. The diabetic control rats (465.6 mg/dL) showed significantly higher blood glucose level than the normal rats (76.3 mg/dL) after 4 weeks, but was significantly reduced with onion kimchi extract and quercetin supplementation (p<0.001). Changes in body weight, kidney weight and urine volume were not significantly different in diabetic control rats, and in onion kimchi extract and quercetin treated rats. The serum total cholesterol levels of control were significantly decreased in onion kimchi extract and quercetin supplementation groups, respectively (p<0.001). The blood urea nitrogen level and urinary protein excretion in diabetic rats were not significant different among the groups. These results suggest that onion kimchi extract supplementation in STZ-induced diabetic rats may be a very important factor for the reduction of blood glucose and serum cholesterol profiles.

Effect of Green Tea Catechin on the Microsomal Mixed Function Oxidase System of Kidney and Brain in Streptozotocin-Induced Diabetic Rats (Streptozotocin 유발 당뇨쥐의 신장 및 뇌조직에서의 Microsomal Mixed Function Oxidase System에 미치는 녹차 Catechin의 영향)

  • 이순재;신주영;차복경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.2
    • /
    • pp.319-325
    • /
    • 1998
  • The purpose of this study was to investigate the effect of green tea catechin on microsomal mixed function oxidase(MFO) system of kidney and brain in streptozotocin(STZ) induced diabetic rats. Sprague-Dawley male rats weighing 140$\pm$10g were randomly assigned to one control and three STZ-diabetic groups. Diabetic groups wer classified to DM-0C(catechin 0%/kg diet), DM-0.5C (catechin 0.5%/kg diet), and DM-1.0C(catechin 1%/kg diet) according to the level of catechin supplementation. Diabetes were experimentally induced by intravenous administration of 55mg/kg body weight of STZ in citrate buffer(pH 4.3) after 4 weeks feeding of three experimental diets. Animals were sacrificed at the sixth day of diabetic state. The contents of cytochrome P450 in kidney were increased by 77, 42, 49% in DM-0C, DM-0.5C and DM-1.0C groups, respectively, than normal group. The contents of cytochrome P450 in brain were increased by 43% in DM-0C group than normal group, but those of DM-0.5C and DM-1.0C groups were similar to that of normal group. The contents of cytochrome b5 in kidney were increased by 78, 38, 49% in DM-0C, DM-0.5C and DM-1.0C groups, respectively, than normal group. Meanwhile, the contents of cytochrome b5 in brain were not significantly different among all groups. The activities of NADPH-cytochrome P450 reductase in kidney of DM-group were increased by 27% than normal group, but those of DM-0.5C and DM-1.0C groups were 13 and 15% lower than that of DM-0C group. The activities in brain were also increased by 31% in DM-0C group, but those of DM-0.5C and DM-1.0C groups were similar to than of normal group. Levels of TBARS (thiobarbituric acid reactive substance) in kidney were increased by 147, 60 and 59% in DM-0C, DM-0.5C, and DM-1.0C groups, respectively, compared with normal group, but those of DM-0.5C and DM-1.0C groups were 36, 35% lower than that of DM-0C group. Meanwhile, the levels of TBARS in brain were not significantly different among four groups. These results indicate that dietary catechins in green tea play a powerful antioxidant role in reducing the lipid peroxidation enhanced by activation of MFO system in STZ-induced diabetes.

  • PDF