• Title/Summary/Keyword: STI-CMP

Search Result 62, Processing Time 0.026 seconds

A Study on the Characteristics of Polishing Pad in STI-CMP Process (STI-CMP 공정에 미치는 연마 패드 특성에 관한 연구)

  • 박성우;박성우;김상용;이우선;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.54-57
    • /
    • 2001
  • We studied the characteristics of polishing pad, which can apply STI-CMP process for global planarization of multilevel interconnection structure. Also, we investigated the effects of different sets of polishing pad, such as soft and hard pad. As an experimental result, hard pad showed center-fast type, and soft pad showed edge-fast type. Totally, the defect level has shown little difference, however, the counts of scratch was defected less than 2 on JRlll pad. Through the above results, we can select optimum polishing pad, so we can expect the improvements of throughput and devise yield.

  • PDF

Analysis on the defect and scratch of Chemical Mechanical Polishing Process (CMP 공정의 Defect 및 Scratch의 유형분석)

  • Kim, Hyung-Gon;Kim, Chul-Bok;Kim, Sang-Yong;Lee, Cheol-In;Kim, Tae-Hyung;Chang, Eui-Goo;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.189-192
    • /
    • 2001
  • Recently, STI process is getting attention as a necessary technology for making high density of semiconductor by devices isolation method. However, it does have various problems caused by CMP nprocess, such as torn oxide defects, nitride residues on oxide, damages of si active region, contaminations due to post-CMP cleaning, difficulty of accurate end point detection in CMP process, etc. In this work, the various defects induced by CMP process was introduced and the above mentioned problems of CMP process was examined in detail. Finally, the guideline of future CMP process was presented to reduce the effects of these defects.

  • PDF

Analysis on the defect and scratch of Chemical Mechanical Polishing process (CMP 공정의 Defect 및 Scratch의 유형분석)

  • 김형곤;김철복;정상용;이철인;김태형;장의구;서용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.189-192
    • /
    • 2001
  • Recently, STI process is getting attention as a necessary technology for making high density of semiconductor by devices isolation method. However, it does have various problems caused by CMP process, such as torn oxide defects, nitride residues on oxide, damages of si active region, contaminations due to post-CMP cleaning, difficulty of accurate end point detection in CMP process, etc. In this work, the various defects induced by CMP process was introduced and the above mentioned Problems of CMP process was examined in detail. Finally, the guideline of future CMP process was presented to reduce the effects of these defects.

  • PDF

A Study on Characterization and Modeling of Shallow Trench Isolation in Oxide Chemical Mechanical Polishing

  • Kim, Sang-Yong;Chung, Hun-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.3
    • /
    • pp.24-27
    • /
    • 2001
  • The end point of oxide chemical mechanical polishing (CMP) have determined by polishing time calculated from removal rate and target thickness of oxide. This study is about control of oxide removal amounts on the shallow trench isolation (STI) patterned wafers using removal rate and thickness of blanket (non-patterned) wafers. At first, it was investigated the removal properties of PETEOS blanket wafers, and then it was compared with the removal properties and the planarization (step height) as a function of polishing time of the specific STI patterned wafers. We found that there is a relationship between the oxide removal amounts of blanket and patterned wafers. We analyzed this relationship, and the post CMP thickness of patterned wafers could be controlled by removal rate and removal target thickness of blanket wafers. As the result of correlation analysis, we confirmed that there was the strong correlation between patterned and blanket wafer (correlation factor: 0.7109). So, we could confirm the repeatability as applying for STI CMP process from the obtained linear formula. As the result of repeatability test, the differences of calculated polishing time and actual polishing time was about 3.48 seconds. If this time is converted into the thickness, then it is from 104 $\AA$ to 167 $\AA$. It is possible to be ignored because process margin is about 1800 $\AA$.

  • PDF

Dependency of Planarization Efficiency on Crystal Characteristic of Abrasives in Nano Ceria Slurry for Shallow Trench Isolation Chemical Mechanical Polishing (STI CMP용 나노 세리아 슬러리에서 연마입자의 결정특성에 따른 평탄화 효율의 의존성)

  • Kang, Hyun-Goo;Takeo Katoh;Kim, Sung-Jun;Ungyu Paik;Park, Jea-Gun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.65-65
    • /
    • 2003
  • Chemical mechanical polishing (CMP) is one of the most important processes in recent ULSI (Ultra Large Scale Integrated Circuit) manufacturing technology. Recently, ceria slurries with surfactant have recently been used in STI-CMP,[1] became they have high oxide-to-nitride removal selectivity and widen the processing margin The role of the abrasives, however, on the effect of planarization on STI-CMP is not yet clear. In this study, we investigated how the crystal characteristic affects the planarization efficiency of wafer surface with controlling crystallite size and poly crystalline abrasive size independently.

  • PDF

Determination of End Point for Direct Chemical Mechanical Polishing of Shallow Trench Isolation Structure

  • Seo, Yong-Jin;Lee, Kyoung-Jin;Kim, Sang-Yong;Lee, Woo-Sun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.1
    • /
    • pp.28-32
    • /
    • 2003
  • In this paper, we have studied the in-situ end point detection (EPD) for direct chemical mechanical polishing (CMP) of shallow trench isolation (STI) structures without the reverse moat etch process. In this case, we applied a high selectivity $1n (HSS) that improves the silicon oxide removal rate and maximizes oxide to nitride selectivity Quite reproducible EPD results were obtained, and the wafer-to-wafer thickness variation was significantly reduced compared with the conventional predetermined polishing time method without EPD. Therefore, it is possible to achieve a global planarization without the complicated reverse moat etch process. As a result, the STI-CMP process can be simplified and improved using the new EPD method.

Effects of Consumable on STI-CMP Process (STI-CMP 공정에서 Consumable의 영향)

  • 김상용;박성우;정소영;이우선;김창일;장의구;서용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.185-188
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process is widely used for global planarization of inter-metal dielectric (IMD) layer and inter-layer dielectric (ILD) for deep sub-micron technology. However, as the IMD and ILD layer gets thinner, defects such as micro-scratch lead to severe circuit failure, which affect yield. In this paper, for the improvement of CMP Process, deionized water (DIW) pressure, purified $N_2$ (P$N_2$) gas, slurry filter and high spray bar were installed. Our experimental results show that DIW pressure and P$N_2$ gas factors were not related with removal rate, but edge hot-spot of patterned wafer had a serious relation. Also, the filter installation in CMP polisher could reduce defects after CMP process, it is shown that slurry filter plays an important role in determining consumable pad lifetime. The filter lifetime is dominated by the defects. However, the slurry filter is impossible to prevent defect-causing particles perfectly. Thus, we suggest that it is necessary to install the high spray bar of de-ionized water (DIW) with high pressure, to overcome the weak-point of slurry filter. Finally, we could expect the improvements of throughput, yield and stability in the ULSI fabrication process.

  • PDF