• Title/Summary/Keyword: STI structure

Search Result 49, Processing Time 0.024 seconds

A Study on the Electrical Characteristics of Ultra Thin Gate Oxide

  • Eom, Gum-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.169-172
    • /
    • 2004
  • Deep sub-micron device required to get the superior ultra thin gate oxide characteristics. In this research, I will recommend a novel shallow trench isolation structure(STI) for thin gate oxide and a $N_2$O gate oxide 30 $\AA$ by NO ambient process. The local oxidation of silicon(LOCOS) isolation has been replaced by the shallow trench isolation which has less encroachment into the active device area. Also for $N_2$O gate oxide 30 $\AA$, ultra thin gate oxide 30 $\AA$ was formed by using the $N_2$O gate oxide formation method on STI structure and LOCOS structure. For the metal electrode and junction, TiSi$_2$ process was performed by RTP annealing at 850 $^{\circ}C$ for 29 sec. In the viewpoints of the physical characteristics of MOS capacitor, STI structure was confirmed by SEM. STI structure was expected to minimize the oxide loss at the channel edge. Also, STI structure is considered to decrease the threshold voltage, result in a lower Ti/TiN resistance( Ω /cont.) and higher capacitance-gate voltage(C- V) that made the STI structure more effective. In terms of the TDDB(sec) characteristics, the STI structure showed the stable value of 25 % ~ 90 % more than 55 sec. In brief, analysis of the ultra thin gate oxide 30 $\AA$ proved that STI isolation structure and salicidation process presented in this study. I could achieve improved electrical characteristics and reliability for deep submicron devices with 30 $\AA$ $N_2$O gate oxide.

Property variation of transistor in Gate Etch Process versus topology of STI CMP (STI CMP후 Topology에 따른 Gate Etch, Transistor 특성 변화)

  • 김상용;정헌상;박민우;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.181-184
    • /
    • 2001
  • Chemical Mechanical Polishing(CMP) of Shallow Trench Isolation(STI) structure in 0.18 m semiconductor device fabrication is studied. CMP process is applied for the STI structure with and without reverse moat pattern and End Point Detection (EPD) method is tested. To optimize the transistor properties related metal 1 parameters, we studied the correlation between CMP thickness of STI using high selectivity slurry, DOE of gate etch recipe, and 1st metal DC values. Remaining thickness of STI CMP is proportional to the thickness of gate-etch process and this can affect to gate profile. As CMP thickness increased, the N-poly foot is deteriorated, and the P-Poly Noth is getting better. If CD (Critical Dimension) value is fixed at some point, all IDSN/P values are in inverse proportional to CMP thickness by reason of so called Profile Effect. Weve found out this phenomenon in all around DOE conditions of Gate etch process and we also could understand that it would not have any correlation effects between VT and CMP thickness in the range of POE 120 sec conditions. As CMP thickness increased by 100 ${\AA}$, 3.2 u${\AA}$ of IDSN is getting better in base 1 condition. In POE 50% condition, 1.7 u${\AA}$ is improved, and 0.7 u${\AA}$ is improved in step 2 condition. Wed like to set the control target of CD (critical dimension) in gate etch process which can affect Idsat, VT property versus STI topology decided by CMP thickness. We also would like to decide optimized thickness target of STI CMP throughout property comparison between conventional STI CMP with reverse moat process and newly introduced STI CMP using high selectivity slurry. And we studied the process conditions to reduce Gate Profile Skew of which source known as STI topology by evaluation of gate etch recipe versus STI CMP thickness.

  • PDF

Property variation of transistor in Gate Etch Process versus topology of STI CMP (STI CMP후 Topology에 따른 Gate Etch, Transistor 특성 변화)

  • Kim, Sang-Yong;Chung, Hun-Sang;Park, Min-Woo;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.181-184
    • /
    • 2001
  • Chemical Mechanical Polishing(CMP) of Shallow Trench Isolation(STD structure in 0.18 m semiconductor device fabrication is studied. CMP process is applied for the STI structure with and without reverse moat pattern and End Point Detection (EPD) method is tested. To optimize the transistor properties related metal 1 parameters. we studied the correlation between CMP thickness of STI using high selectivity slurry. DOE of gate etch recipe, and 1st metal DC values. Remaining thickness of STI CMP is proportional to the thickness of gate-etch process and this can affect to gate profile. As CMP thickness increased. the N-poly foot is deteriorated. and the P-Poly Noth is getting better. If CD (Critical Dimension) value is fixed at some point,, all IDSN/P values are in inverse proportional to CMP thickness by reason of so called Profile Effect. Weve found out this phenomenon in all around DOE conditions of Gate etch process and we also could understand that it would not have any correlation effects between VT and CMP thickness in the range of POE 120 sec conditions. As CMP thickness increased by $100\AA$. 3.2 $u\AA$ of IDSN is getting better in base 1 condition. In POE 50% condition. 1.7 $u\AA$ is improved. and 0.7 $u\AA$ is improved in step 2 condition. Wed like to set the control target of CD (critical dimension) in gate etch process which can affect Idsat, VT property versus STI topology decided by CMP thickness. We also would like to decide optimized thickness target of STI CMP throughout property comparison between conventional STI CMP with reverse moat process and newly introduced STI CMP using high selectivity slurry. And we studied the process conditions to reduce Gate Profile Skew of which source known as STI topology by evaluation of gate etch recipe versus STI CMP thickness.

  • PDF

A Study of End Point Detection Measurement for STI-CMP Applications (STI-CMP 공정 적용을 위한 연마 정지점 고찰)

  • 이경태;김상용;김창일;서용진;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.90-93
    • /
    • 2000
  • In this study, the rise throughput and the stability in fabrication of device can be obtained by applying of CMP process to STI structure in 0.18um semiconductor device. To employ in STI CMP, the reverse moat process has been added thus the process became complex and the defects were seriously increased. Removal rates of each thin films in STI CMP was not equal hence the devices must to be effected, that is, the damage was occured in the device dimension in the case of excessive CMP process and the nitride film was remained on the device dimension in the case of insufficient CMP process than these defects affect the device characteristics. To resolve these problems, the development of slurry for CMP with high removal rate and high selectivity between each thin films was studied then it can be prevent the reasons of many defects by reasons of many defects by simplification of process that directly apply CMP process to STI structure without the reverse moat pattern process.

  • PDF

Investigations of Latch-up characteristics of CMOS well structure with STI technology (STI 기술을 채용한 CMOS well 구조에서의 Latch-up 특성 평가)

  • Kim, In-Soo;Kim, Chang-Duk;Kim, Jong-Chul;Kim, Jong-Kwan;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.339-341
    • /
    • 1997
  • From this first studies, We have investigated the latch-up characteristics of various CMOS well structures possible with high energy ion implantation processes. In this study, we also investigated those of STI(Shallow Trench Isolation} structures with varing n+/p+ spacing and the depth of trench. STI structure is formed by T-SUPREM4 process simulator, and then latch-up simulations for each case were performed by MEDICI device simulator for latch-up immunity improvement. STI is very effective to preventing the degradation of latch-up characteristics as the n+/p+ spacing is reduced. These studies will allow us to evaluate each technology and suggest guidelines for the optimization of latch-up susceptibility.

  • PDF

Effects of Trench Depth on the STI-CMP Process Defects (트랜치 깊이가 STI-CMP 공정 결함에 미치는 영향)

  • 김기욱;서용진;김상용
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.17-23
    • /
    • 2002
  • The more productive and stable fabrication can be obtained by applying chemical mechanical polishing (CMP) process to shallow trench isolation (STI) structure in 0.18 $\mu\textrm{m}$ semiconductor device. However, STI-CMP process became more complex, and some kinds of defect such as nitride residue, tern oxide defect were seriously increased. Defects like nitride residue and silicon damage after STI-CMP process were discussed to accomplish its optimum process condition. In this paper, we studied how to reduce torn oxide defects and nitride residue after STI-CMP process. To understand its optimum process condition, We studied overall STI-related processes including trench depth, STI-fill thickness and post-CMP thickness. As an experimental result showed that as the STI-fill thickness becomes thinner, and trench depth gets deeper, more tern oxide were found in the CMP process. Also, we could conclude that low trench depth whereas high CMP thickness can cause nitride residue, and high trench depth and over-polishing can cause silicon damage.

  • PDF

A study on EPD of STI CMP Process with Reverse Moat Pattern (Reverse Moat Pattern을 가진 STI CMP 공정에서 EPD 고찰)

  • Lee, Kyung-Tae;Kim, Sang-Yong;Seo, Yong-Jin;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.14-17
    • /
    • 2000
  • The rise throughput and the stability in fabrication of device can be obtained by applying of CMP process to STI structure in 0.18um semiconductor device. To employ in STI CMP, the reverse moat process has been added thus the process became complex and the defects were seriously increased. Removal rates of each thin films in STi CMP was not equal hence the devices must to be effected, that is, the damage was occured in the device dimension in the case of excessive CMP process and the nitride film was remained on the device dimension in the case of insufficient CMP process than these defects affect the device characteristics. We studied the current sensing method in STI-CMP with the reverse moat pattern.

  • PDF

Reproducible Chemical Mechanical Polishing Characteristics of Shallow Trench Isolation Structure using High Selectivity Slurry

  • Jeong, So-Young;Seo, Yong-Jin;Kim, Sang-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.5-9
    • /
    • 2002
  • Chemical mechanical polishing (CMP) has become the preferred planarization method for multilevel interconnect technology due to its ability to achieve a high degree of feature level planarity. Especially, to achieve the higher density and greater performance, shallow trench isolation (STI)-CMP process has been attracted attention for multilevel interconnection as an essential isolation technology. Also, it was possible to apply the direct STI-CMP process without reverse moat etch step using high selectivity slurry (HSS). In this work, we determined the process margin with optimized process conditions to apply HSS STI-CMP process. Then, we evaluated the reliability and reproducibility of STI-CMP process through the optimal process conditions. The wafer-to-wafer thickness variation and day-by-day reproducibility of STI-CMP process after repeatable tests were investigated. Our experimental results show, quite acceptable and reproducible CMP results with a wafer-to-wafer thickness variation within 400$\AA$.

Characteristics of Transistors and Isolation as Trench Depth (트렌치 깊이에 따른 트랜지스터와 소자분리 특성)

  • 박상원;김선순;최준기;이상희;김용해;장성근;한대희;김형덕
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.911-913
    • /
    • 1999
  • Shallow Trench Isolation (STI) has become the most promising isolation scheme for ULSI applications. The stress of STI structure is one of several factors to degrade characteristics of a device. The stress contours or STI structure vary with the trench depth. Isolation characteristics of STI was analyzed as the depth of trench varied. And transistor characteristics was compared. Isolation punch-through voltage for n$^{+}$ to pwell and p$^{+}$ to nwell increased as trench depth increased. n$^{+}$ to pwell leakage current had nothing to do with trench depth but n$^{+}$ to pwell leakage current decreased as trench depth increased. In the case of transistor characteristics, short channel effect was independent on trench depth and inverse narrow width effect was greater for deeper trenches. Therefore in order to achieve stable device, it is important to minimize stress by optimizing trench depth.

  • PDF

A Study of End Point Detection Measurement for STI-CMP Applications (STI-CMP 공정 적용을 위한 연마 정지점 고찰)

  • 김상용;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.175-184
    • /
    • 2001
  • In this study, the improved throughput and stability in device fabrication could be obtained by applying CMP process to STi structue in 0.18 um semiconductor device. To employ the CMP process in STI structure, the Reverse Moat Process used to be added after STI Fill, as a result, the process became more complex and the defect were seriously increased than they had been,. Removal rate of each thin film in STI CMP was not uniform, so, the device must have been affected. That is, in case of excessive CMP, the damage on the active area was occurred, and in the case of insufficient CMP nitride remaining was happened on that area. Both of them deteriorated device characteristics. As a solution to these problems, the development of slurry having high removal rate and high oxide to nitride selectivity has been studied. The process using this slurry afford low defect levels, improved yield, and a simplified process flow. In this study, we evaluated the 'High Selectivity Slurry' to do a global planarization without reverse moat step, and also we evaluated EPD(Eend Point Detection) system with which 'in-situ end point detection' is possible.

  • PDF