• Title/Summary/Keyword: STEAM Education Program

Search Result 240, Processing Time 0.023 seconds

An Analysis on STEAM Education Teaching and Learning Program on Technology and Engineering (융합인재교육(STEAM)에서 기술 및 공학 분야에 대한 교수학습 프로그램 분석)

  • Ahn, Jaehong;Kwon, Nanjoo
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.4
    • /
    • pp.708-717
    • /
    • 2013
  • The new paradigm of the 21st Century science education explores a wide range of possibilities that can foster students' interest toward science and creative convergence thinking. In this study, through the analysis of programs that were developed in 'STEAM leader school' and 'STEAM teacher association for research' supported by the 'Ministry of Education, Science, and Technology,' we analyzed the linking frequency with each of STEAM education's fields and teachers' perception for the convergence strategy of technology and engineering. The results of this study show that linking frequency of technology and engineering is lower than the field of arts and mathematics in elementary school, but higher in middle and high school. 'Introduction technology contents in lives' in technology and 'crafts activity' in engineering are the most used teaching and learning strategy in STEAM education. But, although 'crafts activity' is engineering's major way of learning, many teachers understand and use it as a technological teaching learning strategy. It is important to understand that each of STEAM education's field has a unique nature and educational implications, for the effective settlement of STEAM education, we need to consider teaching and learning strategy in various way.

Art based STEAM Education Program using EPL (EPL을 활용한 예술 중심의 STEAM 교육 프로그램)

  • Jeon, SeongKyun;Lee, YoungJun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.4
    • /
    • pp.149-158
    • /
    • 2014
  • The rapidly changing 21st-century knowledge and information society is emphasizing converged education that crosses various academic fields. In particular, the society expected the cultivation of the talent who balance scientific creativity and artistic sensitivity by adding arts to the existing converged education revolving around science and technology. However, at present, most STEAM education has been actively conducted with a focus on science and technology, whereas the subject of arts has been regarded or utilized as a supplementary means. Its problem is that the educational characteristics and values of art education have not been effectively utilized in educational terms and this could lead to superficial integrated education. In this respect, this study had the knowledge of various fields, such as science, technology, and mathematics, utilized usefully during the process of experiencing and creating arts. Accordingly, this study designed an education programs as with the case of Nam-Jun Baek who expanded the dominion of arts by creatively utilizing his own time's scientific technologies. In this educational process, the target program was developed in a manner that enables EPL to be utilized essentially as the study's knowledge-based tool and medium. The results of applying this educational program in 5th-grade elementary school students showed that the program has positive effects on the creative attributes of the students.

Development of Python Education Program for Block Coding Learners (블록코딩 선행학습자를 위한 Python 교육 프로그램 개발)

  • Kim, Taeryeong;Han, Sungwan
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.1
    • /
    • pp.53-60
    • /
    • 2018
  • In this study we have developed a Python education program that can be applied to students who have studied block-based coding. We have developed a Python education program based on the extracted the learners' level of block-based coding by analyzing the programs and the textbooks. We extracted the grammar of the block-based coding and constructed the curriculum. Then, the Python education program was composed by 16 hours. After reviewing the appropriateness of the education program through expert validation, it was concluded that the developed Python education program is suitable for applying to learners of block-based coding. We expect that proposed program will be effectively applied as basic resources to learn script coding in class.

The Effect of Brain-Based Evolutionary STEAM Education on Scientific Interest and Scientific Creativity in Elementary School Students (뇌기반 진화적 STEAM 교육이 초등학생의 과학 흥미와 과학 창의성에 미치는 영향)

  • Jeong, Kyung-Wook;Lim, Chae-Seong
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.2
    • /
    • pp.239-252
    • /
    • 2021
  • The purpose of this study is to develop an evolutionary STEAM education program based on the brain and to analyze its effects on scientific interest and scientific creativity of elementary school students. Four different topics based on four scientific fields (Physics, Chemistry, Biology and Earth Science) were derived from the science textbook under the 2015 revised curriculum to build a brain-based evolutionary STEAM education program. The research subjects were 90 fourth graders of S-elementary school located in Gyeonggi Province, Korea and they were divided into an experimental group of 45 students and a comparative group of 45 students. The main findings of this study are as follows. First, according to the independent samples t-test of scientific interest, no statistically significant difference were found between the two groups, but the brain-based evolutionary STEAM education had meaningful effect on improving 'interest in scientific learning' and 'anxiety about scientific learning'. Second, according to the paired samples t-test of scientific interest, the experimental group had significantly improved 'interest in science' but on the other hand, there was no effect on the comparative group. Third, scientific creativity and originality of the experimental group were significantly higher after the class than that of the comparative group. Fourth, although there were some significant differences between the two groups in scientific creativity after the class, both groups had improved scientific creativity between the results of pre and post test. Based on these results, we discuss implications for science education and STEAM education research.

The Effects of Design Thinking in High School Chemistry Classes (디자인씽킹 기반 고등학교 화학 수업의 효과 연구)

  • Yang, Heesun;Kim, Mi-Yong;Kang, Seong-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.3
    • /
    • pp.159-174
    • /
    • 2020
  • The purpose of this study is to examine 'Design Thinking' based Chemistry Class program as an education strategy for core competence of creative convergence talent. The program stages were modified and supplemented into eight stages, including 'Knowledge Understand', 'Empathy', 'Sharing perspective', 'Ideate', '1st Prototype', '1st Test', '2nd Prototype', and '2nd Test', so that the 'Design Thinking Process in Science Education' can be applied to the chemistry class. Considering the linkage between the 2015 and 2009 revised national curriculum, the achievement criteria were selected, and the lesson plans and student activity sheet were developed according to the themes to be met. Four thematic educational programs were developed and applied to Chemistry I for the second grade of high school students from March to August. The results were verified through qualitative data analysis of the class scene and pre- and post-test based on inventories of 'Empathy' 'STEAM educational competence', 'Problem solving process'. As a result of applying the developed program, 'empathy' showed a significant improvement in empathy with others and empathy with the problem situation. In 'STEAM educational competence', there was a significant enhancement in science and design competence. In the 'problem finding process', the problem definition, problem solution design, and problem-solving review were significantly improved in the 'problem-solving process'. The results of this study provided implications for the applicability of design thinking - based chemistry classes and its educational effect.

Development of SW-STEAM Education Program Using Monte Carlo Simulation: Focusing on Mendelian Inheritance (몬테카를로 시뮬레이션을 활용한 SW융합교육 프로그램 개발: 멘델의 유전 원리를 중심으로)

  • Kim, Bongchul;Yoo, Hyejin;Oh, Seungtak;Namgoong, Dongkook;Kim, Jonghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.2
    • /
    • pp.97-104
    • /
    • 2022
  • As the era of digital transformation begins in earnest, the importance of convergent thinking based on software, artificial intelligence, and big data is increasing. In line with these social needs, this study developed a 5th hour SW-STEAM education program using Monte Carlo simulation techniques for Mendelian inheritance in the field of life science. By programming and implementing Mendelian inheritance using Monte carlo simulation, the program was organized so that not only convergent thinking skills but also related knowledge could be understood in depth. In order to verify the validity of the developed education program, 11 experts in related fields were requested to test the content validity, and the validity was verified by meeting the CVR reference value of 0.59 suggested by Lawshe.

Development of Climate Change Education Program in High School Based on CLAMP Inquiry of Fossil Leaves (잎화석의 CLAMP 탐구를 통한 고등학교 기후변화 교육 프로그램 개발)

  • Yoon, Mabyong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.12 no.1
    • /
    • pp.27-39
    • /
    • 2019
  • The purpose of this study is to develop a STEAM program for teaching climate change through CLAMP (Climate-Leaf Analysis Multivariate Program) paleoclimate inquiry in connection with high school 'Integrated Science' subject. In order to do so, we analyzed the 2015 revised national curriculum and science textbook in terms of the PDIE instructional design model, and developed the teaching-learning materials for 10 class hours through expert panel discussion and pilot test. According to the STEAM class procedure, in the situation presentation stage, the fossil leaves were collected from the dicotyledon plants near school, and the LMA (Leaf Margin Analysis) climate inquiry activity. was presented as the learning goal. During the creative design stage, students were taught about geology and leaf fossils in the study region, and CLAMP input data (31 characteristics of morphotype and leaf architectural of fossil leaves) were given. In the emotional experience and new challenge stage, we collected leaf fossils for outdoor learning, explored paleoclimate with CLAMP method, and promoted climatic literacy in the process of discussing tendencies and causes of Cenozoic's climate change. The validity of the development program was assessed (CVI .84) as being suitable for development purpose in all items through the process of establishing reliability among expert panel. In order to apply the program to the high school, a pilot test was conducted to supplement the discrepancies and to review the suitability. The satisfaction rate of the participants was 4.48, and the program was complemented with their opinions. This study will enable high school students to have practical knowledge and reacting volition for climate change, and contribute to fostering students' climate literacy.

Teacher's Recognition and Needs about STEAM Education in Specialized High Schools for Technical fields (공업계열 특성화고 교사의 STEAM 교육에 대한 인식과 요구도)

  • Sung, Yong-Gu;Kim, Bang-Hee;Kim, Jinsoo
    • 대한공업교육학회지
    • /
    • v.38 no.2
    • /
    • pp.68-88
    • /
    • 2013
  • This study is to analyze teacher's recognition and needs of STEAM education in specialized high schools for technical fields. For this study, survey using questionnaire was applied to teachers in specialized high schools for technical fields. This study includes the recognition and the needs on STEAM education of general and industrial subject teachers in specialized high schools for technical fields. In order to carry on this study, 655 questionnaires were collected from teachers of 16 specialized high schools for technical fields in the whole country. Practically, 611 questionnaires (257 of normal subject teachers and 398 of industrial subject teachers) were used for this study. As a result, it is known that the needs of STEAM education is larger to industrial subject teachers than general subject teachers. But it is disclosed that STEAM education is more difficult to general subject teachers than industrial subject teachers. In requirements of teaching-learning, general subject teachers only required reference materials, but industrial subject teachers needed STEAM lesson under the same subjects and data sharing system as a priority. General and industrial subject teachers also considered education program development for creative thinking skills and problem solving abilities as a priority. Finally, in the administrative and financial requirement, both of them demand to reduce administrative tasks as a priority.

An Analysis Study on Mathematics Learning Characteristics of Out-of-School Youth through STEAM Education with Mathematics and Music (수학과 음악의 융합인재교육으로 변화된 학교 밖 청소년의 수학학습 특성 분석)

  • Kim, Youngin;Suh, Boeuk
    • Communications of Mathematical Education
    • /
    • v.36 no.3
    • /
    • pp.313-334
    • /
    • 2022
  • The purpose of this study is to analyze the changes in mathematical learning through applying STEAM education according to social needs for out-of-school youth. For this purpose, we developed a teaching and learning model and program for mathematics and music STEAM education, and we implemented and analyzed the changes of affective area and problem-solving strategies. The analysis results of characteristic in affective area are as follows: first, the activity-oriented class of mathematics and music STEAM education aroused interest in mathematics. Second, providing opportunities for mathematics and music STEAM education instilled a positive perception of the value of mathematics and STEAM education. Third, the autonomous communication-oriented learning environment of mathematics and music STEAM education improved confidence and motivation to learn in mathematics. The analysis results of the characteristic in problem-solving strategy are as follows: first, through the STEAM education with mathematics and music, a conceptual understanding of internally and externally dividing points was formed, and a given problem was expressed and solved in a formula. Second, the functional correspondence relationship was understood, and the given problem was described and solved with symbols associated with the function. The suggestions of the study are as follows: first, based on the teaching and learning model and results of this study, various STEAM education programs for out-of-school youth should be developed and expanded to foster future competencies and provide new changes for out-of-school youth. Second, it can be used for research on the development of teaching and learning materials for convergence elective subjects in the high school credit system by referring to the mathematics and music convergence STEAM program of this study. As the subjects and fields of STEAM education are diversified and organized, students in need of receiving educational opportunities will be reduced, and there will be a world where the name of out-of-school youth and alternative education will not be necessary. Therefore, it is expected that development of teaching and learning programs created by interest in education of out-of-school youth will be used as an innovative idea in school education to achieve a virtuous cycle.

Meta Analysis of STEAM (Science, Technology, Engineering, Arts, Mathematics) Program Effect on Student Learning (융합인재교육(STEAM) 프로그램이 학생에 미친 효과에 대한 메타분석)

  • Kang, Nam-Hwa;Lee, Na-ri;Rho, Minjeong;Yoo, Jin Eun
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.6
    • /
    • pp.875-883
    • /
    • 2018
  • This study examined overall effect of STEAM programs on student learning through meta-analysis of journal articles published for the past six years. We examined the areas of effects that the research tested and analyzed overall effect across the research. We first identified academic journal articles that utilized quasi-experimental design in examining STEAM effects on student learning and presented appropriate data for meta-analysis such as effect size. A total of 63 articles were identified to be appropriate for meta-analysis. Using R packages, we first identified outliers and eliminated them in the analysis of mean effect size. Thus, 172 effect sizes from 60 studies were analyzed. The results showed that the mean effect was medium (effect size = 0.52). Analysis showed that moderators of the effect were affective measures, thinking skills, character measures, and career aspirations, which meant the studies that measured these variables had more effect than achievement measures. On the other hand, the school level (elementary, middle, and high school), the absence or presence of student products as program requirements, hours of intervention, and sample size did not moderate the effect. Thus, regardless of these variables STEAM programs produced medium effect in general. Based on these results, further research areas and topics are suggested.