• 제목/요약/키워드: STAT3 pathways

검색결과 46건 처리시간 0.024초

Role of STAT3 as a Molecular Adaptor in Cell Growth Signaling: Interaction with Ras and other STAT Proteins

  • Song, Ji-Hyon;Park, Hyon-Hee;Park, Hee-Jeong;Han, Mi-Young;Kim, Sung-Hoon;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제34권5호
    • /
    • pp.484-488
    • /
    • 2001
  • STATs are proteins with a dual function: signal transducers in the cytoplasm and transcriptional activators in the nucleus. Among the six known major STATs (STAT1-6), STAT3 has been implicated in the widest range of signaling pathways that regulate cell growth and differentiation. As a part of our on-going investigation on the pleiotropic functions of STAT proteins, we examined the role of STAT3 as a molecular adaptor that links diverse cell growth signaling pathways. We observed that STAT3 can be specifically activated by multiple cytokines, such as IL-3, in transformed fibroblasts and IL-4 or IFN-$\gamma$ in primary immune cells, respectively. The selective activation of STAT3 in H-ras-transformed NIH3T3 cells is associated with an increased expression of phosphoserioe STAT3 in these cells, compared to the parental cells. Notably phosphoresine-STAT3 interacts with oncogenic ras, shown by immunoprecipitation and Western blots. The results suggest the role of STAT3 in rasinduced cellular transformation as a molecular adaptor linking the Jak/STAT and Ras/MAPK pathways. In primary immune cells, IL-4 and IFN-$\gamma$ each induced (in addition to the characteristic STAT6 and STAT1 homodimers) the formation of STAT3-containing complexes that bind to GAS probes, which correspond to the $Fe{\varepsilon}$ Rll and $Fe{\gamma}$ RI promoter sequences, respectively. Since IL-4 and IFN-$\gamma$ are known to counter-regulate the expression of these genes, the ability of STAT3 to form heterodimeric complexes with STAT6 or STAT1 implies its role in the fine-tuned control of genes that are regulated by IL-4 and IFN-$\gamma$.

  • PDF

Saponins from Rubus parvifolius L. Induce Apoptosis in Human Chronic Myeloid Leukemia Cells through AMPK Activation and STAT3 Inhibition

  • Ge, Yu-Qing;Xu, Xiao-Feng;Yang, Bo;Chen, Zhe;Cheng, Ru-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5455-5461
    • /
    • 2014
  • Background: Saponins are a major active component for the traditional Chinese medicine, Rubus parvifolius L., which has shown clear antitumor activities. However, the specific effects and mechanisms of saponins of Rubus parvifolius L. (SRP) remain unclear with regard to human chronic myeloid leukemia cells. The aim of this study was to investigate inhibition of proliferation and apoptosis induction effects of SRP in K562 cells and further elucidate its regulatory mechanisms. Materials and Methods: K562 cells were treated with different concentrations of SRP and MTT assays were performed to determine cell viability. Apoptosis induction by SRP was determined with FACS and DAPI staining analysis. Western blotting was used to detect expression of apoptosis and survival related genes. Specific inhibitors were added to confirm roles of STAT3 and AMPK pathways in SRP induction of apoptosis. Results: Our results indicated that SRP exhibited obvious inhibitory effects on the growth of K562 cells, and significantly induced apoptosis. Cleavage of pro-apoptotic proteins was dramatically increased after SRP exposure. SRP treatment also increased the activities of AMPK and JNK pathways, and inhibited the phosphorylation expression level of STAT3 in K562 cells. Inhibition of the AMPK pathway blocked the activation of JNK by SRP, indicating that SRP regulated the expression of JNK dependent oon the AMPK pathway. Furthermore, inhibition of the latter significantly conferred resistance to SRP pro-apoptotic activity, suggesting involvement of the AMPK pathway in induction of apoptosis. Pretreatment with a STAT3 inhibitor also augmented SRP induced growth inhibition and cell apoptosis, further confirming roles of the STAT3 pathway after SRP treatment. Conclusions: Our results demonstrated that SRP induce cell apoptosis through AMPK activation and STAT3 inhibition in K562 cells. This suggests the possibility of further developing SRP as an alternative treatment option, or perhaps using it as adjuvant chemotherapeutic agent for chronic myeloid leukemia therapy.

PMA Activates Stat3 in the Jak/Stat Pathway and Induces SOCS5 in Rat Brain Astrocytes

  • Hwang, Mi-Na;Kim, Kwang Soo;Choi, Yo-Woo;Jou, Ilo;Yoon, Sungpil
    • Molecules and Cells
    • /
    • 제23권1호
    • /
    • pp.94-99
    • /
    • 2007
  • Suppressors of cytokine signaling (SOCS) family members are negative feedback regulators of the Jak/Stat pathway, which is an essential inflammatory signaling pathway. We investigated expression of eight members of the SOCS family in rat astrocytes, using two inflammatory stimulants, PMA and IFN-${\gamma}$. Only a few SOCS genes were induced by both stimulants, and we detected an increase in SOCS5 protein with PMA. PMA activated the Jnk, Erk, p38, and Jak/Stat signal pathways. In addition, it increased the level of activated-Stat3 resulting from tyrosine phosphorylation. A gel-shift assay showed that a protein in nuclear extracts from PMA-treated cells was able to bind to Stat binding elements. These results suggest that activated Stat3 binds to SOCS promoters and leads to their transcriptional induction.

Signal Transducer and Activator of Transcription 3 - A Promising Target in Colitis-Associated Cancer

  • Pandurangan, Ashok Kumar;Esa, Norhaizan Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.551-560
    • /
    • 2014
  • Colorectal cancer (CRC) is the third most common malignancy and fourth most common cause of cancer mortality worldwide. Untreated chronic inflammation in the intestine ranks among the top three high-risk conditions for colitis-associated colorectal cancer (CAC). Signal Transducer and Activator of Transcription 3 (STAT3) protein is a member of the STAT family of transcription factors often deregulated in CRC. In this review, we try to emphasize the critical role of STAT3 in CAC as well as the crosstalk of STAT3 with inflammatory cytokines, nuclear factor (NF)-${\kappa}B$, PI3K/Akt, Mammalian Target of Rapamycin (mTOR), Notch, $Wnt/{\beta}$-catenin and microRNA (MiR) pathways. STAT3 is considered as a primary drug target to treat CAC in humans and rodents. Also we updated the findings for inhibitors of STAT3 with regard to effects on tumorigenesis. This review will hopefully provide insights on the use of STAT3 as a therapeutic target in CAC.

Extracellular Signal-regulated Kinase Activation Is Required for Serine 727 Phosphorylation of STAT3 in Schwann Cells in vitro and in vivo

  • Lee, Hyun-Kyoung;Jung, Jun-Yang;Lee, Sang-Hwa;Seo, Su-Yeong;Suh, Duk-Joon;Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권3호
    • /
    • pp.161-168
    • /
    • 2009
  • In the peripheral nerves, injury-induced cytokines and growth factors perform critical functions in the activation of both the MEK/ERK and JAK/STAT3 pathways. In this study, we determined that nerve injury-induced ERK activation was temporally correlated with STAT3 phosphorylation at the serine 727 residue. In cultured Schwann cells, we noted that ERK activation is required for the serine phosphorylation of STAT3 by neuropoietic cytokine interleukin-6 (IL-6). Serine phosphorylated STAT3 by IL-6 was transported into Schwann cell nuclei, thereby indicating that ERK may regulate the transcriptional activity of STAT3 via the induction of serine phosphorylation of STAT3. Neuregulin-1 (NRG) also induced the serine phosphorylation of STAT3 in an ERK-dependent fashion. In contrast with the IL-6 response, serine phosphorylated STAT3 induced by NRG was not detected in the nucleus, thus indicating the non-nuclear function of serine phosphorylated STAT3 in response to NRG. Finally, we determined that the inhibition of ERK prevented injury-induced serine phosphorylation of STAT3 in an ex-vivo explants culture of the sciatic nerves. Collectively, the results of this study show that ERK may be an upstream kinase for the serine phosphorylation of STAT3 induced by multiple stimuli in Schwann cells after peripheral nerve injury.

Inhibition of the Interleukin-11-STAT3 Axis Attenuates Hypoxia-Induced Migration and Invasion in MDA-MB-231 Breast Cancer Cells

  • Lim, Ji-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권5호
    • /
    • pp.391-396
    • /
    • 2014
  • Although interleukin-11 (IL-11) has been reported to be elevated in hypoxic tumors and has been associated with a poor prognosis in various cancers, little is known about its precise role in promoting metastasis in hypoxic tumors. In the present study, the molecular mechanism underlying the effects of IL-11 on MDA-MB-231 breast cancer cells migration and invasion in relation to metastasis under hypoxic conditions has been defined. Inhibition of IL-11 expression or function using small interfering RNA (siRNA) or a neutralizing antibody attenuated hypoxic MDA-MB-231 breast cancer cell migration and invasion through down-regulation of matrix metalloproteinases (MMPs) and activation of epithelial-to-mesenchymal transition (EMT) related gene expression. In addition, hypoxia-induced IL-11 increased STAT3 phosphorylation and STAT3 knockdown suppressed hypoxic MDA-MB-231 breast cancer cell invasion due to reduced MMP levels and reprogrammed EMT-related gene expression. These results suggest that one of the hypoxic metastasis pathways and the regulation of this pathway could be a potential target for novel cancer therapeutics.

Differential Signaling and Virus Production in Calu-3 Cells and Vero Cells upon SARS-CoV-2 Infection

  • Park, Byoung Kwon;Kim, Dongbum;Park, Sangkyu;Maharjan, Sony;Kim, Jinsoo;Choi, Jun-Kyu;Akauliya, Madhav;Lee, Younghee;Kwon, Hyung-Joo
    • Biomolecules & Therapeutics
    • /
    • 제29권3호
    • /
    • pp.273-281
    • /
    • 2021
  • Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19) pandemic. Signaling pathways that are essential for virus production have potential as therapeutic targets against COVID-19. In this study, we investigated cellular responses in two cell lines, Vero and Calu-3, upon SARS-CoV-2 infection and evaluated the effects of pathway-specific inhibitors on virus production. SARS-CoV-2 infection induced dephosphorylation of STAT1 and STAT3, high virus production, and apoptosis in Vero cells. However, in Calu-3 cells, SARS-CoV-2 infection induced long-lasting phosphorylation of STAT1 and STAT3, low virus production, and no prominent apoptosis. Inhibitors that target STAT3 phosphorylation and dimerization reduced SARS-CoV-2 production in Calu-3 cells, but not in Vero cells. These results suggest a necessity to evaluate cellular consequences upon SARS-CoV-2 infection using various model cell lines to find out more appropriate cells recapitulating relevant responses to SARS-CoV-2 infection in vitro.

니클로사마이드를 이용한 STAT3 신호전달 조절을 통해 LPS로 유발된 패혈증 동물모델 보호 효과 검증 연구 (Protective Effect of Niclosamide on Lipopolysaccharide-induced Sepsis in Mice by Modulating STAT3 Pathway)

  • 장세광
    • 대한임상검사과학회지
    • /
    • 제55권4호
    • /
    • pp.306-313
    • /
    • 2023
  • 패혈증은 병원성 감염에 의해 여러 장기에 나타나는 전신성 염증 반응으로, 현재로서는 유망한 치료제가 없다. Signal transducer and activator of transcription 3 (STAT3)은 세포 신호전달 전사 인자로서 항염증 및 염증 반응과 관련된 다양한 세포의 생물학적 과정에서 중요한 역할을 한다. Niclosamide는 FDA에서 승인된 구충제로 STAT3 조절에 관여한다고 알려져 있다. C57BL/6 마우스에 복강 주사로 지질 다당체 (lipopolysaccharide, LPS)를 투여해 패혈증을 유발하였고, Niclosamide를 LPS 주사 2시간 후에 경구 투여하였다. 본 연구에서 Niclosamide가 LPS로 유발된 패혈증 모델의 생존률과 폐 손상을 완화시켰고, 혈청 내 interleukin (IL)-6, 종양괴사인자(tumor necrosis factor-α, TNF-α), IL-1β, AST, ALT, LDH 수치를 유의하게 감소시켰다. 또한 폐 조직 면역 블롯을 통해 PI3K, AKT, NF-κB, STAT3 신호 전달 경로가 Niclosamide에 의해 조절되는 것을 확인하였다. Niclosamide는 LPS를 자극한 RAW 264.7 세포주에서 IL-6, TNF-α, IL-1β와 같은 염증성 사이토카인의 발현을 감소시켰으며, 또한 STAT3의 인산화를 감소시켰다. 본 연구를 통해 Niclosamide에 의한 STAT3 조절이 염증 반응을 억제함으로써 패혈증 모델에 대한 새로운 치료 전략을 제시하였다.

Sinensetin Inhibits Interleukin-6 in Human Mast Cell - 1 Via Signal Transducers and Activators of the Transcription 3 (STAT3) and Nuclear Factor Kappa B (NF-κB) Pathways

  • Chae, Hee-Sung;Kim, Young-Mi;Chin, Young-Won
    • Natural Product Sciences
    • /
    • 제23권1호
    • /
    • pp.1-4
    • /
    • 2017
  • Sinensetin, a pentamethoxyflavone, is known to exert various pharmacological activities including anti-angiogenesis, anti-diabetic and anti-inflammatory activities. However, its effects on the human mast cell - 1 (HMC-1) mediated inflammatory mechanism remain unknown. To explore the mediator and cellular inflammatory response of sinensetin, we examined its influence on phorbol 12-myristate 13-acetate (PMA) plus A23187 induced inflammatory mediator production in a human mast cell line. In this study, interleukin (IL)-6 production was measured using the enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction. Sinensetin inhibited PMA plus A23187 induced IL-6 production in a dose-dependent manner as well as IL-4, IL-5 and IL-8 mRNA expression. Furthermore, sinensetin inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation, suggesting that sinensetin inhibits the production of inflammatory mediators by blocking STAT3 phosphorylation. Moreover, sinensetin was found to inhibit nuclear factor kappa B activation. These findings suggest that sinensetin may be involved in the regulation of mast cell-mediated inflammatory responses.

제2형 콜라겐으로 경구관용을 유도한 관절염 모델 마우스의 비장림프구내의 보조자극인자 및 STAT/SOCS 신호전달 인자의 발현 양상조사 (Expression of Co-stimulatory Molecules and STAT/SOCS Signaling Factors in the Splenocytes of Mice Tolerized against Arthritis by Oral Administration of Type II Collagen)

  • 이강은;황수연;민소연;김호연
    • IMMUNE NETWORK
    • /
    • 제3권3호
    • /
    • pp.248-254
    • /
    • 2003
  • Oral administration of antigen has long been used in the induction of immune tolerance in various animal models of autoimmune diseases including rheumatoid arthritis (RA). Alleveation of arthritogenic symptoms has been reported from RA patients who received oral administration of type II collagen (CII) without side effects, however its rather inconsistent therapeutic efficacy and variation among patients calls for more detailed investigation on the mechanism of oral tolerance to be settled as regular treatment for RA. In an attempt to understand the immunogenic processes underpinning tolerance induction by orally administered CII, we analyzed changes in the expression of costimulatory molecules and STAT/SOCS signaling messengers in the mouse model of collagen induced arthritis (CIA). We found thatin the spleen of CIA mice, that has been undergone repeated oral feeding of CII prior to the induction of arthritis, showed increased promortion of CTLA4 expressing lymphocytes than in the spleen of PBS fed control. On the other hand, cells expressing CD28 or ICOS were decreased in the spleen of tolerized mice. Tolerance induction by oral CII administration also enhanced the expression of STAT6 in both RNA and protein level, while not affecting the expression of STAT3. The expression of SOCS3, which hasbeen known to transmit STAT-mediated signals from Th2 type cytokines, remained unchanged in the spleen of tolerized mice. Interestingly transcript of SOCS1, which has been associated with Th1 related pathways, was only visible in the spleen of tolerized but not of control mice, suggesting that as in the case of IL-6 signaling, it may exert a feed back inhibition toward the Th1 type stimulation.