Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.226

Differential Signaling and Virus Production in Calu-3 Cells and Vero Cells upon SARS-CoV-2 Infection  

Park, Byoung Kwon (Institute of Medical Science, College of Medicine, Hallym University)
Kim, Dongbum (Institute of Medical Science, College of Medicine, Hallym University)
Park, Sangkyu (Department of Biochemistry, College of Natural Sciences, Chungbuk National University)
Maharjan, Sony (Institute of Medical Science, College of Medicine, Hallym University)
Kim, Jinsoo (Department of Microbiology, College of Medicine, Hallym University)
Choi, Jun-Kyu (Department of Biochemistry, College of Natural Sciences, Chungbuk National University)
Akauliya, Madhav (Department of Microbiology, College of Medicine, Hallym University)
Lee, Younghee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University)
Kwon, Hyung-Joo (Institute of Medical Science, College of Medicine, Hallym University)
Publication Information
Biomolecules & Therapeutics / v.29, no.3, 2021 , pp. 273-281 More about this Journal
Abstract
Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19) pandemic. Signaling pathways that are essential for virus production have potential as therapeutic targets against COVID-19. In this study, we investigated cellular responses in two cell lines, Vero and Calu-3, upon SARS-CoV-2 infection and evaluated the effects of pathway-specific inhibitors on virus production. SARS-CoV-2 infection induced dephosphorylation of STAT1 and STAT3, high virus production, and apoptosis in Vero cells. However, in Calu-3 cells, SARS-CoV-2 infection induced long-lasting phosphorylation of STAT1 and STAT3, low virus production, and no prominent apoptosis. Inhibitors that target STAT3 phosphorylation and dimerization reduced SARS-CoV-2 production in Calu-3 cells, but not in Vero cells. These results suggest a necessity to evaluate cellular consequences upon SARS-CoV-2 infection using various model cell lines to find out more appropriate cells recapitulating relevant responses to SARS-CoV-2 infection in vitro.
Keywords
Apoptosis; COVID-19; SARS-CoV-2; STAT1; STAT3; STAT3 phosphorylation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Datta, P. K., Liu, F., Fischer, T., Rappaport, J. and Qin, X. (2020) SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics 10, 7448-7464.   DOI
2 Del Corno, M., Donninelli, G., Varano, B., Da Sacco, L., Masotti, A. and Gessani, S. (2014) HIV-1 gp120 activates the STAT3/interleukin-6 axis in primary human monocyte-derived dendritic cells. J. Virol. 88, 11045-11055.   DOI
3 Fehr, A. R. and Perlman, S. (2015) Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282, 1-23.   DOI
4 Girard, M. P., Cherian, T., Pervikov, Y. and Kieny, M. P. (2005) A review of vaccine research and development: human acute respiratory infections. Vaccine 23, 5708-5724.   DOI
5 Heim, M. H. (2015) Interferon signaling. In Signaling Pathways in Liver Diseases, 3rd ed., pp. 214-225. Wiley Blackwell, New York.
6 WHO (2015). Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July 2003. Available from: https://www.who.int/csr/sars/country/table2004_04_21/en/.
7 WHO (2019). Middle East Respiratory Syndrome Coronavirus (MERSCoV). Available from: http://www.who.int/emergencies/mers-cov/en/.
8 WHO (2020). Coronavirus disease (COVID-19) Weekly Epidemiological Update and Weekly Operational Update. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.
9 Wu, Z. and McGoogan, J. M. (2020) Characteristics of and important lessons from the Coronavirus disease 2019 (COVID-19) outbreak in china: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA 323, 1239-1242.   DOI
10 Xia, S., Liu, M., Wang, C., Xu, W., Lan, Q., Feng, S., Qi, F., Bao, L., Du, L., Liu, S., Qin, C., Sun, F., Shi, Z., Zhu, Y., Jiang, S. and Lu, L. (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 30, 343-355.   DOI
11 Yokogami, K., Wakisaka, S., Avruch, J. and Reeves, S. A. (2000) Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr. Biol. 10, 47-50.   DOI
12 Kandeel, M., Yamamoto, M., Al-Taher, A., Watanabe, A., Oh-Hashi, K., Park, B. K., Kwon, H. J., Inoue, J. I. and Al-Nazawi, M. (2020) Small molecule inhibitors of Middle East Respiratory Syndrome Coronavirus fusion by targeting cavities on heptad repeat trimers. Biomol. Ther. (Seoul) 28, 311-319.   DOI
13 Ho, H. H. and Ivashkiv, L. B. (2006) Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation. J. Biol. Chem. 281, 14111-14118.   DOI
14 Holmes, K. V. (2003) SARS coronavirus: a new challenge for prevention and therapy. J. Clin. Invest. 111, 1605-1609.   DOI
15 Hui, K. P., Li, H. S., Cheung, M. C., Chan, R. W., Yuen, K. M., Mok, C. K., Nicholls, J. M., Peiris, J. S. and Chan, M. C. (2016) Highly pathogenic avian influenza H5N1 virus delays apoptotic responses via activation of STAT3. Sci. Rep. 6, 28593.   DOI
16 Kaye, M. (2006) SARS-associated coronavirus replication in cell lines. Emerg. Infect. Dis. 12, 128-133.   DOI
17 Roca Suarez, A. A., Van Renne, N., Baumert, T. F. and Lupberger, J. (2018) Viral manipulation of STAT3: evade, exploit, and injure. PLoS Pathog. 14, e1006839.   DOI
18 Park, B. K., Maharjan, S., Lee, S. I., Kim, J., Bae, J. Y., Park, M. S. and Kwon, H. J. (2019) Generation and characterization of a monoclonal antibody against MERS-CoV targeting the spike protein using a synthetic peptide epitope-CpG-DNA-liposome complex. BMB Rep. 52, 397-402.   DOI
19 Peiris, J. S., Guan, Y. and Yuen, K. Y. (2004) Severe acute respiratory syndrome. Nat. Med. 10, S88-S97.   DOI
20 Rawlings, J. S., Rosler, K. M. and Harrison, D. A. (2004) The JAK/STAT signaling pathway. J. Cell Sci. 117, 1281-1283.   DOI
21 Rothan, H. A. and Byrareddy, S. N. (2020) The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 109, 102433.   DOI
22 Sen, N., Che, X., Rajamani, J., Zerboni, L., Sung, P., Ptacek, J. and Arvin, A. M. (2012) Signal transducer and activator of transcription 3 (STAT3) and survivin induction by varicella-zoster virus promote replication and skin pathogenesis. Proc. Natl. Acad. Sci. U.S.A. 109, 600-605.   DOI
23 Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A. and Li, F. (2020) Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U.S.A. 117, 11727-11734.   DOI
24 Shuai, K. (2003) Serine phosphorylation: arming Stat1 against infection. Immunity 19, 771-772.   DOI
25 Wang, W. B., Levy, D. E. and Lee, C. K. (2011) STAT3 negatively regulates type I IFN-mediated antiviral response. J. Immunol. 187, 2578-2585.   DOI
26 Chang, Z., Wang, Y., Zhou, X. and Long, J. E. (2018) STAT3 roles in viral infection: antiviral or proviral? Future Virol. 13, 557-574.   DOI
27 Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. and Fouchier, R. A. (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814-1820.   DOI
28 Zhang, E. X., Oh, O. S., See, W., Raj, P., James, L., Khan, K. and Tey, J. S. (2016) Assessment of the risk posed to Singapore by the 2015 Middle East respiratory syndrome outbreak in the Republic of Korea. Western Pac. Surveill. Response J. 7, 17-25.   DOI
29 Biondi, R. M. and Nebreda, A. R. (2003) Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem. J. 372, 1-13.   DOI
30 Chandra, V., Kar-Roy, A., Kumari, S., Mayor, S. and Jameel, S. (2008) The hepatitis E virus ORF3 protein modulates epidermal growth factor receptor trafficking, STAT3 translocation, and the acutephase response. J. Virol. 82, 7100-7110.   DOI
31 Danthi, P. (2016) Viruses and the diversity of cell death. Annu. Rev Virol. 3, 533-553.   DOI
32 Matsuyama, S., Nao, N., Shirato, K., Kawase, M., Saito, S., Takayama, I., Nagata, N., Sekizuka, T., Katoh, H., Kato, F., Sakata, M., Tahara, M., Kutsuna, S., Ohmagari, N., Kuroda, M., Suzuki, T., Kageyama, T. and Takeda, M. (2020) Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. U.S.A. 117, 7001-7003.   DOI
33 Kim, J. M., Chung, Y. S., Jo, H. J., Lee, N. J., Kim, M. S., Woo, S. H., Park, S., Kim, J. W., Kim, H. M. and Han, M. G. (2020) Identification of coronavirus Isolated from a patient in Korea with COVID-19. Osong Public Health Res. Perspect. 11, 3-7.   DOI
34 Khalaf, K., Papp, N., Chou, J. T., Hana, D., Mackiewicz, A. and Kaczmarek, M. (2020) SARS-CoV-2: pathogenesis, and advancements in diagnostics and treatment. Front. Immunol. 11, 570927.   DOI
35 Kuchipudi, S. V. (2015) The complex role of STAT3 in viral infections. J. Immunol. Res. 2015, 272359.   DOI
36 McKechnie, J. L. and Blish, C. A. (2020) The innate immune system: fighting on the front lines or fanning the flames of COVID-19? Cell Host Microbe 27, 863-869.   DOI
37 Mizutani, T., Fukushi, S., Murakami, M., Hirano, T., Saijo, M., Kurane, I. and Morikawa, S. (2004) Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells. FEBS Lett. 577, 187-192.   DOI
38 Nan, Y., Wu, C. and Zhang, Y. J. (2017) Interplay between Janus kinase/signal transducer and activator of transcription signaling activated by type I interferons and viral antagonism. Front. Immunol. 8, 1758.   DOI
39 Park, A. and Iwasaki, A. (2020) Type I and type III Interferons - induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe 27,870-878.   DOI
40 Kane, M. and Golovkina, T. (2010) Common threads in persistent viral infections. J. Virol. 84, 4116-4123.   DOI
41 Waris, G., Huh, K. W. and Siddiqui, A. (2001) Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-kappa B via oxidative stress. Mol. Cell. Biol. 21, 7721-7730.   DOI