Browse > Article
http://dx.doi.org/10.7314/APJCP.2014.15.2.551

Signal Transducer and Activator of Transcription 3 - A Promising Target in Colitis-Associated Cancer  

Pandurangan, Ashok Kumar (Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia)
Esa, Norhaizan Mohd (Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.15, no.2, 2014 , pp. 551-560 More about this Journal
Abstract
Colorectal cancer (CRC) is the third most common malignancy and fourth most common cause of cancer mortality worldwide. Untreated chronic inflammation in the intestine ranks among the top three high-risk conditions for colitis-associated colorectal cancer (CAC). Signal Transducer and Activator of Transcription 3 (STAT3) protein is a member of the STAT family of transcription factors often deregulated in CRC. In this review, we try to emphasize the critical role of STAT3 in CAC as well as the crosstalk of STAT3 with inflammatory cytokines, nuclear factor (NF)-${\kappa}B$, PI3K/Akt, Mammalian Target of Rapamycin (mTOR), Notch, $Wnt/{\beta}$-catenin and microRNA (MiR) pathways. STAT3 is considered as a primary drug target to treat CAC in humans and rodents. Also we updated the findings for inhibitors of STAT3 with regard to effects on tumorigenesis. This review will hopefully provide insights on the use of STAT3 as a therapeutic target in CAC.
Keywords
Colitis associated cancer; STAT3; NF-${\kappa}B$; cytokines; MiRNA;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Sheng H, Shao J, Williams CS, et al (1998). Nuclear translocation of beta-catenin in hereditary and carcinogen-induced intestinal adenomas. Carcinogenesis, 19, 543-9.   DOI   ScienceOn
2 Solinas G, Marchesi F, Garlanda C, et al (2010). Inflammationmediated promotion of invasion and metastasis. Cancer Metastasis Rev, 29, 243-8.   DOI   ScienceOn
3 Sparks AB, Morin PJ, Vogelstein B, et al (1998). Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res, 58, 1130-4.
4 Steinman L (2007). A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med, 13, 139-45.   DOI   ScienceOn
5 Stolfi C, Rizzo A, Franze E, et al (2011). Involvement of interleukin-21 in the regulation of colitis-associated colon cancer. J Exp Med, 208, 2279-90.   DOI   ScienceOn
6 Suzui M, Ushijima T, Dashwood RH, et al (1999). Frequent mutations of the rat beta-catenin gene in colon cancers induced by methylazoxymethanol acetate plus 1-hydroxyanthraquinone. Mol Carcinog, 24, 232-7.   DOI
7 Suzuki A, Hanada T, Mitsuyama K, et al (2001). CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med, 193, 471-81.   DOI   ScienceOn
8 Yu H, Pardoll D, Jove R (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer, 9, 798-809.   DOI   ScienceOn
9 Yang Y, Yan X, Duan W, et al (2013). Pterostilbene Exerts Antitumor Activity via the Notch1 Signaling Pathway in Human Lung Adenocarcinoma Cells. PLoS ONE, 8, 62652.   DOI
10 Yu H, Jove R (2004). The STATs of cancer--new molecular targets come of age. Nat Rev Cancer, 4, 97-105.   DOI   ScienceOn
11 Yu H, Kortylewski M, Pardoll D (2007). Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol, 7, 41-51.   DOI   ScienceOn
12 Zhang HY, Spechler SJ, Souza RF (2009). Esophageal adenocarcinoma arising in Barrett esophagus. Cancer Lett, 275, 170-7.   DOI   ScienceOn
13 Zhong Z, Wen Z, Darnell JE, Jr (1994). Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science, 264, 95-8.   DOI
14 Thiem S, Pierce TP, Palmieri M, et al (2013). mTORC1 inhibition restricts inflammation-associated gastrointestinal tumorigenesis in mice. J Clin Invest, 123, 767-81.
15 Tian Y, Ye Y, Gao W, et al (2011). Aspirin promotes apoptosis in a murine model of colorectal cancer by mechanisms involving downregulation of IL-6-STAT3 signaling pathway. Int J Colorectal Dis, 26, 13-22.   DOI
16 Seidelin JB, Nielsen OH (2005). Continuous cytokine exposure of colonic epithelial cells induces DNA damage. Eur J Gastroenterol Hepatol, 17, 363-9.   DOI
17 Seo HS, Choi HS, Kim SR, et al (2012). Apigenin induces apoptosis via extrinsic pathway, inducing p53 and inhibiting STAT3 and NFkappaB signaling in HER2-overexpressing breast cancer cells. Mol Cell Biochem, 366, 319-34.   DOI
18 Van Kemseke C, Belaiche J, Louis E (2000). Frequently relapsing Crohn's disease is characterized by persistent elevation in interleukin-6 and soluble interleukin-2 receptor serum levels during remission. Int J Colorectal Dis, 15, 206-10.   DOI
19 Zhu H, Zhou X, Redfield S, et al (2013). Elevated Jagged-1 and Notch-1 expression in high grade and metastatic prostate cancers. Am J Transl Res, 5, 368-78.
20 Tyagi A, Singh RP, Ramasamy K, et al (2009). Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kappaB and signal transducers and activators of transcription 3. Cancer Prev Res, 2, 74-83.   DOI   ScienceOn
21 Ullman TA, Itzkowitz SH (2011). Intestinal inflammation and cancer. Gastroenterology, 140, 1807-16.   DOI   ScienceOn
22 Villanueva A, Alsinet C, Yanger K, et al (2012). Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology, 143, 1660-9.   DOI   ScienceOn
23 Wang B, Xiao Z, Chen B, et al (2008). Nogo-66 promotes the differentiation of neural progenitors into astroglial lineage cells through mTOR-STAT3 pathway. PLoS ONE, 3, 1856.   DOI   ScienceOn
24 Wang Z, Jin H, Xu R, et al (2009). Triptolide downregulates Rac1 and the JAK/STAT3 pathway and inhibits colitisrelated colon cancer progression. Exp Mol Med, 41, 717-27.   DOI   ScienceOn
25 Ward JM (1974). Morphogenesis of chemically induced neoplasms of the colon and small intestine in rats. Lab Invest, 30, 505-13.
26 Wodarz A, Nusse R (1998). Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol, 14, 59-88.   DOI   ScienceOn
27 Yan S, Zhou C, Zhang W, et al (2008). beta-Catenin/TCF pathway upregulates STAT3 expression in human esophageal squamous cell carcinoma. Cancer Lett, 271, 85-97.   DOI   ScienceOn
28 Zhou J, Wulfkuhle J, Zhang H, et al (2007). Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A, 104, 16158-63.   DOI   ScienceOn
29 Deng L, Zhou JF, Sellers RS, et al (2010). A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol, 176, 952-67.   DOI
30 De Nitto D, Sarra M, Pallone F, et al (2010). Interleukin-21 triggers effector cell responses in the gut. World J Gastroenterol, 16, 3638-41.   DOI
31 Dill MT, Tornillo L, Fritzius T, et al (2013). Constitutive Notch2 signaling induces hepatic tumors in mice. Hepatology, 57, 1607-19.   DOI
32 Fre S, Pallavi SK, Huyghe M, et al (2009). Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci U S A, 106, 6309-14.   DOI
33 Dontu G, Jackson KW, McNicholas E, et al (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res, 6, 605-15.   DOI
34 Fiala ES, Sohn OS, Hamilton SR (1987). Effects of chronic dietary ethanol on in vivo and in vitro metabolism of methylazoxymethanol and on methylazoxymethanolinduced DNA methylation in rat colon and liver. Cancer Res, 47, 5939-43.
35 Fina D, Sarra M, Fantini MC, et al (2008). Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology, 134, 1038-48.   DOI
36 Friedman RC, Farh KK, Burge CB, et al (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19, 92-105.
37 Fujino S, Andoh A, Bamba S, et al (2003). Increased expression of interleukin 17 in inflammatory bowel disease. Gut, 52, 65-70.   DOI   ScienceOn
38 Chen Q, Wang H, Liu Y, et al (2012). Inducible microRNA-223 down-regulation promotes TLR-triggered IL-6 and IL-1beta production in macrophages by targeting STAT3. PLoS ONE, 7, 42971.   DOI
39 Carthew RW (2006). Gene regulation by microRNAs. Curr Opin Genet Dev, 16, 203-8.   DOI   ScienceOn
40 Catlett-Falcone R, Landowski TH, Oshiro MM, et al (1999). Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity, 10, 105-15.   DOI   ScienceOn
41 Corvinus FM, Orth C, Moriggl R, et al (2005). Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. Neoplasia, 7, 545-55.   DOI
42 Dashwood RH, Suzui M, Nakagama H, et al (1998). High frequency of beta-catenin (ctnnb1) mutations in the colon tumors induced by two heterocyclic amines in the F344 rat. Cancer Res, 58, 1127-9.
43 Coussens LM, Werb Z (2002). Inflammation and cancer. Nature, 420, 860-7.   DOI   ScienceOn
44 Danese S, Mantovani A (2010). Inflammatory bowel disease and intestinal cancer: a paradigm of the Yin-Yang interplay between inflammation and cancer. Oncogene, 29, 3313-23.   DOI   ScienceOn
45 Darnell JE, Jr (2002). Transcription factors as targets for cancer therapy. Nat Rev Cancer, 2, 740-9.   DOI   ScienceOn
46 Baud V, Karin M (2009). Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov, 8, 33-40.   DOI   ScienceOn
47 Becker C, Fantini MC, Schramm C, et al (2004). TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity, 21, 491-501.   DOI   ScienceOn
48 Becker C, Fantini MC, Wirtz S, et al (2005). IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle, 4, 217-20.
49 Bollrath J, Phesse TJ, von Burstin VA, et al (2009). gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell, 15, 91-102.   DOI   ScienceOn
50 Brand S (2009). Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut, 58, 1152-67.   DOI   ScienceOn
51 Bray SJ (2006). Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol, 7, 678-89.   DOI   ScienceOn
52 Buettner R, Mora LB, Jove R (2002). Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res, 8, 945-54.
53 Abraham C, Cho J (2009). Interleukin-23/Th17 pathways and inflammatory bowel disease. Inflamm Bowel Dis, 15, 1090-100.   DOI   ScienceOn
54 Aggarwal BB, Vijayalekshmi RV, Sung B (2009). Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res, 15, 425-30.   DOI   ScienceOn
55 Bromberg JF, Wrzeszczynska MH, Devgan G, et al (1999). Stat3 as an oncogene. Cell, 98, 295-303.   DOI   ScienceOn
56 Armanious H, Gelebart P, Mackey J, et al (2010). STAT3 upregulates the protein expression and transcriptional activity of beta-catenin in breast cancer. Int J Clin Exp Pathol, 3, 654-64.
57 Ivanov, II, McKenzie BS, Zhou L, et al (2006). The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell, 126, 1121-33.   DOI   ScienceOn
58 Jensen J, Pedersen EE, Galante P, et al (2000). Control of endodermal endocrine development by Hes-1. Nat Genet, 24, 36-44.   DOI   ScienceOn
59 Jin S, Mutvei AP, Chivukula IV, et al (2012). Non-canonical Notch signaling activates IL-6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKKalpha/IKKbeta. Oncogene, 26, 517.
60 Ashokkumar P, Sudhandiran G (2008). Protective role of luteolin on the status of lipid peroxidation and antioxidant defense against azoxymethane-induced experimental colon carcinogenesis. Biomed Pharmacother, 62, 590-7.   DOI   ScienceOn
61 Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-97.   DOI   ScienceOn
62 Ashokkumar P, Sudhandiran G (2011). Luteolin inhibits cell proliferation during Azoxymethane-induced experimental colon carcinogenesis via Wnt/ beta-catenin pathway. Invest New Drugs, 29, 273-84.   DOI
63 Atreya R, Mudter J, Finotto S, et al (2000). Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med, 6, 583-8.   DOI   ScienceOn
64 Atreya R, Neurath MF (2008). Signaling molecules: the pathogenic role of the IL-6/STAT-3 trans signaling pathway in intestinal inflammation and in colonic cancer. Curr Drug Targets, 9, 369-74.   DOI   ScienceOn
65 He TC, Sparks AB, Rago C, et al (1998). Identification of c-MYC as a target of the APC pathway. Science, 281, 1509-12.   DOI   ScienceOn
66 Grivennikov S, Karin M (2008). Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell, 13, 7-9.   DOI   ScienceOn
67 Harris TJ, Grosso JF, Yen HR, et al (2007). Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol, 179, 4313-7.   DOI
68 He G, Karin M (2011). NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell Res, 21, 159-68.   DOI   ScienceOn
69 Heitzler P, Bourouis M, Ruel L, et al (1996). Genes of the Enhancer of split and achaete-scute complexes are required for a regulatory loop between Notch and Delta during lateral signalling in Drosophila. Development, 122, 161-71.
70 Hirahara K, Ghoreschi K, Laurence A, et al (2010). Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine Growth Factor Rev, 21, 425-34.   DOI   ScienceOn
71 Hyun YS, Han DS, Lee AR, et al (2012). Role of IL-17A in the development of colitis-associated cancer. Carcinogenesis, 33, 931-6.   DOI   ScienceOn
72 Iliopoulos D, Jaeger SA, Hirsch HA, et al (2010). STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell, 39, 493-506.   DOI   ScienceOn
73 Itzkowitz SH, Yio X (2004). Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol, 287, 7-17.   DOI   ScienceOn
74 Kobayashi T, Okamoto S, Hisamatsu T, et al (2008). IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease. Gut, 57, 1682-9.   DOI   ScienceOn
75 Korinek V, Barker N, Morin PJ, et al (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science, 275, 1784-7.   DOI   ScienceOn
76 Korn T, Bettelli E, Oukka M, et al (2009). IL-17 and Th17 Cells. Annu Rev Immunol, 27, 485-517.   DOI   ScienceOn
77 Kozomara A, Griffiths-Jones S (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res, 39, 30.   DOI   ScienceOn
78 Kundu JK, Surh YJ (2008). Inflammation: gearing the journey to cancer. Mutat Res, 659, 15-30.   DOI   ScienceOn
79 Kusaba T, Nakayama T, Yamazumi K, et al (2005). Expression of p-STAT3 in human colorectal adenocarcinoma and adenoma; correlation with clinicopathological factors. J Clin Pathol, 58, 833-8.   DOI   ScienceOn
80 Garg P, Sarma D, Jeppsson S, et al (2010). Matrix metalloproteinase-9 functions as a tumor suppressor in colitis-associated cancer. Cancer Res, 70, 792-801.   DOI   ScienceOn
81 Genta RM (2003). The gastritis connection: prevention and early detection of gastric neoplasms. J Clin Gastroenterol, 36, 61-2.   DOI   ScienceOn
82 Gregorieff A, Clevers H (2005). Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev, 19, 877-90.   DOI   ScienceOn
83 Grivennikov S, Karin E, Terzic J, et al (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell, 15, 103-13.   DOI   ScienceOn
84 Karin M, Greten FR (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol, 5, 749-759.   DOI   ScienceOn
85 Jump RL, Levine AD (2004). Mechanisms of natural tolerance in the intestine: implications for inflammatory bowel disease. Inflamm Bowel Dis, 10, 462-78.   DOI   ScienceOn
86 Kanai T, Nemoto Y, Kamada N, et al (2009). Homeostatic (IL-7) and effector (IL-17) cytokines as distinct but complementary target for an optimal therapeutic strategy in inflammatory bowel disease. Curr Opin Gastroenterol, 25, 306-13.   DOI   ScienceOn
87 Kargl J, Haybaeck J, Stancic A, et al (2013). O-1602, an atypical cannabinoid, inhibits tumor growth in colitis-associated colon cancer through multiple mechanisms. J Mol Med, 91, 449-58.   DOI
88 Kathiria AS, Neumann WL, Rhees J, et al (2012). Prohibitin attenuates colitis-associated tumorigenesis in mice by modulating p53 and STAT3 apoptotic responses. Cancer Res, 72, 5778-89.   DOI
89 Kawada M, Seno H, Uenoyama Y, Set al (2006). Signal transducers and activators of transcription 3 activation is involved in nuclear accumulation of beta-catenin in colorectal cancer. Cancer Res, 66, 2913-7.   DOI   ScienceOn
90 Kaur M, Velmurugan B, Tyagi A, et al (2010). Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through down-regulation of beta-catenin-dependent signaling. Neoplasia, 12, 415-24.   DOI
91 Kawanishi S, Hiraku Y, Pinlaor S, et al (2006). Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol Chem, 387, 365-72.
92 Kim JH, Kim JE, Liu HY, et al (2008). Regulation of interleukin-6-induced hepatic insulin resistance by mammalian target of rapamycin through the STAT3-SOCS3 pathway. J Biol Chem, 283, 708-15.   DOI   ScienceOn
93 McKay CJ, Glen P, McMillan DC (2008). Chronic inflammation and pancreatic cancer. Best Pract Res Clin Gastroenterol, 22, 65-73.   DOI   ScienceOn
94 Mantovani A, Allavena P, Sica A, et al (2008). Cancer-related inflammation. Nature, 454, 436-44.   DOI   ScienceOn
95 Maynard CL, Weaver CT (2009). Intestinal effector T cells in health and disease. Immunity, 31, 389-400.   DOI   ScienceOn
96 McGeachy MJ, Cua DJ (2008). Th17 cell differentiation: the long and winding road. Immunity, 28, 445-53.   DOI   ScienceOn
97 Mitsuyama K, Toyonaga A, Sasaki E, et al (1995). Soluble interleukin-6 receptors in inflammatory bowel disease: relation to circulating interleukin-6. Gut, 36, 45-9.   DOI
98 Neuman MG (2007). Immune dysfunction in inflammatory bowel disease. Transl Res, 149, 173-86.   DOI   ScienceOn
99 Monteleone G, Monteleone I, Fina D, et al (2005). Interleukin-21 enhances T-helper cell type I signaling and interferongamma production in Crohn's disease. Gastroenterology, 128, 687-94.   DOI   ScienceOn
100 Mudter J, Neurath MF (2007). IL-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflamm Bowel Dis, 13, 1016-23.   DOI   ScienceOn
101 Oberg AL, French AJ, Sarver AL, et al (2011). miRNA expression in colon polyps provides evidence for a multihit model of colon cancer. PLoS ONE, 6, 620465.
102 Johnson GE, Ivanov VN, Hei TK (2008). Radiosensitization of melanoma cells through combined inhibition of protein regulators of cell survival. Apoptosis, 13, 790-802.   DOI   ScienceOn
103 Lakatos PL, Lakatos L (2008). Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies. World J Gastroenterol, 14, 3937-47.   DOI   ScienceOn
104 Scheid MP, Woodgett JR (2003). Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett, 546, 108-12.   DOI   ScienceOn
105 Scheller J, Ohnesorge N, Rose-John S (2006). Interleukin-6 trans-signalling in chronic inflammation and cancer. Scand J Immunol, 63, 321-9.   DOI   ScienceOn
106 Kusaba T, Nakayama T, Yamazumi K, et al (2006). Activation of STAT3 is a marker of poor prognosis in human colorectal cancer. Oncol Rep, 15, 1445-51.
107 Lassmann S, Schuster I, Walch A, et al (2007). STAT3 mRNA and protein expression in colorectal cancer: effects on STAT3-inducible targets linked to cell survival and proliferation. J Clin Pathol, 60, 173-9.
108 Lin L, Deangelis S, Foust E, et al (2010). A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol Cancer, 9, 217.   DOI   ScienceOn
109 Lee H, Herrmann A, Deng JH, et al (2009). Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell, 15, 283-93.   DOI   ScienceOn
110 Lima RT, Busacca S, Almeida GM, et al (2011). MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer, 47, 163-74.   DOI   ScienceOn
111 Lin L, Fuchs J, Li C, et al (2011). STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH(+)/CD133(+) stem cell-like human colon cancer cells. Biochem Biophys Res Commun, 416, 246-51.   DOI   ScienceOn
112 Lu T, Stark GR (2004). Cytokine overexpression and constitutive NFkappaB in cancer. Cell Cycle, 3, 1114-7.
113 Riemenschneider MJ, Betensky RA, Pasedag SM, et al (2006). AKT activation in human glioblastomas enhances proliferation via TSC2 and S6 kinase signaling. Cancer Res, 66, 5618-23.   DOI   ScienceOn
114 Pikarsky E, Porat RM, Stein I, et al (2004). NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 431, 461-6.   DOI   ScienceOn
115 Reddy BS (2004). Studies with the azoxymethane-rat preclinical model for assessing colon tumor development and chemoprevention. Environ Mol Mutagen, 44, 26-35.   DOI   ScienceOn
116 Reedijk M, Odorcic S, Zhang H, et al (2008). Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol, 33, 1223-9.
117 Robertson GP (2005). Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer Metastasis Rev, 24, 273-85.   DOI   ScienceOn
118 Sakamoto K, Maeda S, Hikiba Y, et al (2009). Constitutive NF-kappaB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res, 15, 2248-58.   DOI   ScienceOn
119 Rose-John S, Mitsuyama K, Matsumoto S, et al (2009). Interleukin-6 trans-signaling and colonic cancer associated with inflammatory bowel disease. Curr Pharm Des, 15, 2095-103.   DOI   ScienceOn
120 Rubie C, Frick VO, Pfeil S, et al (2007). Correlation of IL-8 with induction, progression and metastatic potential of colorectal cancer. World J Gastroenterol, 13, 4996-5002.
121 Sartor RB (2006). Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol, 3, 390-407.   DOI   ScienceOn
122 Sarver AL, French AJ, Borralho PM, et al (2009). Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer, 9, 401.   DOI   ScienceOn
123 Takahashi M, Fukuda K, Sugimura T, et al (1998). Beta-catenin is frequently mutated and demonstrates altered cellular location in azoxymethane-induced rat colon tumors. Cancer Res, 58, 42-6.
124 Tenesa A, Dunlop MG (2009). New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet, 10, 353-8.
125 Tetsu O, McCormick F (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398, 422-6.   DOI   ScienceOn
126 Schroeter EH, Kisslinger JA, Kopan Rn (1998). Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature, 393, 382-6.   DOI   ScienceOn
127 Pandurangan AK, Dharmalingam P, Ananda Sadagopan SK, et al (2012). Effect of luteolin on the levels of glycoproteins during azoxymethane-induced colon carcinogenesis in mice. Asian Pac J Cancer Prev, 13, 1569-73.   과학기술학회마을   DOI   ScienceOn
128 Okayasu I, Ohkusa T, Kajiura K, et al (1996). Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut, 39, 87-92.   DOI   ScienceOn
129 Pandurangan AK (2013). Potential Targets for Prevention of Colorectal Cancer: a Focus on PI3K/Akt/mTOR and Wnt Pathways. Asian Pac J Cancer Prev, 14, 2201-5.   과학기술학회마을   DOI   ScienceOn
130 Pandurangan AK, Ananda Sadagopan SK, Dharmalingam P et al (2013). Luteolin, a bioflavonoid inhibits Azoxymethaneinduced colorectal cancer through Nrf2 signaling. Toxicol Mech Methods, 24, 13-20.
131 Petroulakis E, Mamane Y, Le Bacquer O,et al (2006). mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer, 94, 195-9.   DOI   ScienceOn
132 Sohn OS, Ishizaki H, Yang CS, et al (1991). Metabolism of azoxymethane, methylazoxymethanol and N-nitrosodimethylamine by cytochrome P450IIE1. Carcinogenesis, 12, 127-31.   DOI   ScienceOn
133 Shafie NH, Mohd Esa N, Ithnin H, et al (2013). Prophylactic Inositol Hexaphosphate (IP6) inhibits colon cancer through involvement of Wnt/$\beta$-catenin and COX-2 pathway. BioMed Res Int, 2013, 681027.
134 Shanmugam MK, Rajendran P, Li F, et al (2011). Ursolic acid inhibits multiple cell survival pathways leading to suppression of growth of prostate cancer xenograft in nude mice. J Mol Med, 89, 713-27.   DOI   ScienceOn
135 Korn T, Oukka M, Kuchroo V, et al (2007). Th17 cells: effector T cells with inflammatory properties. Semin Immunol, 19, 362-71.   DOI   ScienceOn
136 Caprioli F, Sarra M, Caruso R, et al (2008). Autocrine regulation of IL-21 production in human T lymphocytes. J Immunol, 180, 1800-7.   DOI
137 Bernstein CN, Blanchard JF, Kliewer E, et al (2001). Cancer risk in patients with inflammatory bowel disease: a populationbased study. Cancer, 91, 854-62.   DOI
138 Heikkila K, Ebrahim S, Lawlor DA (2008). Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur J Cancer, 44, 937-945.   DOI   ScienceOn
139 Ogura H, Murakami M, Okuyama Y, et al (2008). Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity, 29, 628-36.   DOI   ScienceOn
140 Schottelius AJ, Dinter H (2006). Cytokines, NF-kappaB, microenvironment, intestinal inflammation and cancer. Cancer Treat Res, 130, 67-87.   DOI