• Title/Summary/Keyword: SSSC (Static Synchronous Series Compensator)

Search Result 35, Processing Time 0.034 seconds

Damping Control Strategy and Analysis Model of Static Synchronous Series Compensator(SSSC) (Static Synchronous Series Compensator(SSSC) 댐핑 제어 및 해석모형)

  • Kim, Hak-Man;Chun, Yeong-Han;Oh, Tae-Kyoo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.509-515
    • /
    • 2000
  • This paper addresses a damping control strategy of Static Synchronous Series Compensator(SSSC) and analysis model for stability study. The effect of injected voltage source generated by SSSC is modelled as equivalent load. This model is thought to be reasonable for the stability study because the dynamics of SSSC is very fast compared with that of power system. Damping controller of SSSC is based on Transient Energy Function method. The proposed control strategy is insensitive to the operating conditions like power flow level because control law depends on the phase angles. The proposed analysis model and control strategy was confirmed by WSCC 9 bus system and two area system. Especially, the robustness of proposed control strategy is demonstrated with respect to multiple operating conditions in two area system.

  • PDF

Comparative Study of the Behavior of a Wind Farm Integrating Three Different FACTS Devices

  • Sarrias, Raul;Gonzalez, Carlos;Fernandez, Luis M.;Garcia, Carlos Andres;Jurado, Francisco
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1258-1268
    • /
    • 2014
  • Improving grid connection of wind farms is a relevant issue to be addressed, especially for fixed-speed wind turbines. Certain elements, such as FACTS (Flexible AC Transmission Systems), are able to perform voltage and reactive power regulation in order to support voltage stability of wind farms, and compensate reactive power consumption from the grid. Several devices are grouped under the name of FACTS, which embrace different technologies and operating principles. Here, three of them are evaluated and compared, namely STATCOM (Static Synchronous Compensator), SVC (Static Var Compensator) and SSSC (Static Synchronous Series Compensator). They have been modeled in MATLAB/Simulink, and simulated under various scenarios, regarding both normal operation and grid fault conditions. Their response is studied together with the case when no FACTS are implemented. Results show that SSSC improves the voltage stability of the wind farm, whereas STATCOM and SVC provide additional reactive power.

Damping Oscillation of Power System by Robust Control of SSSC (강인 제어에 의한 Static Synchronous Series Compensator의 전력계통 동요 억제)

  • Kim, Hak-Man;Oh, Tae-Kyoo;Kook, Kyung-Soo;Jeon, Jin-Hong;Jang, Byung-Hoon;Chu, Jin-Bu
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1035-1038
    • /
    • 1999
  • To improve the damping of all poorly damped oscillation modes, a control strategy of Static Synchronous Series Compensator (SSSC) based on energy method is presented in this Paper As a synchronous voltage-sourced inverter, SSSC is used to provide controllable series compensation. SSSC can provide controllable compensating voltage over an identical capacitive and inductive range. The damping effect of control strategy based on energy function is robustness with respect to loading condition, fault location and network configuration. Furthermore, the control inputs are based on local signals. In two area system, the effect of damping inter-area mode oscillation is demonstrated by the robust control strategy of SSSC.

  • PDF

Impact of Fixed Series Capacitors and SSSC on the LOE Protection of Synchronous Generator

  • Ghorbani, Amir;Lima, Hossein Mehryari;Azadru, Allahverdi;Mozafari, Babak
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1453-1459
    • /
    • 2015
  • Loss of excitation (LOE) relay is prevalently used to protect synchronous generator. The widely used method for synchronous generator LOE protection is a negative offset mho relay with two zones. The basis of this relay is identical to mho impedance relay. In other words, this relay calculates impedance by measuring voltage and current at the generator terminal. On the other hand, the presence of series compensation, changes measured voltage and current signals during loss of excitation. This paper reveals that the presence of series compensators such as fixed series capacitors (FSCs) and static synchronous series compensator (SSSC) causes a significant delay on the performance of generator LOE relay. It is also shown that the presence of SSSC causes the LOE relay to be under-reached. Different operating modes of the power system, the SSSC and also different percentages of series capacitive compensations have been considered in the modeling. All the detailed simulations are carried out in the MATLAB/Simulink environment using the SimPowerSystems toolbox.

Dynamic Characteristic Analysis of SSSC Based on Multi-bridge PAM Inverter

  • Han Byung-Moon;Kim Hee-Joong;Baek Seung-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.539-545
    • /
    • 2001
  • This paper proposes a static synchronous series compensator based on multi-bridge inverter. The proposed system consists of 6 H-bridge modules per phase, which generate 13 pulses for each half period of power frequency. The dynamic characteristic was analyzed by simulations with EMTP code, assuming that it is inserted in the 154-kV transmission line of one-machine-infinite-bus power system. The feasibility of hardware implementation was verified through experimental works using a scaled model. The proposed system does not require a coupling transformer for voltage injection, and has flexibility in expanding the operation voltage by increasing the number of H-bridge modules.

  • PDF

Comparing Impact of STATCOM and SSSC on the Performance of Digital Distance Relay

  • Ghorbani, Amir
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.890-896
    • /
    • 2011
  • In this paper the impact of a SSSC and a STATCOM on the impedance calculated by a distance relay is investigated. Both analytical analysis and simulations are provided. The STATCOM/SSSC control systems are modeled in detail. It is demonstrated that a SSSC has a greater impact on the calculated impedance by an A-G distance relay element. Several scenarios are considered in the simulations like the impact of the fault conditions, the compensator settings, the power system conditions and so on. All the simulations are carried out in MATLAB/Simulink with detailed models of the SSSC and the STATCOM.

Dynamic Characteristics Analysis of Multi-bridge PWM Inverter SSSC (다중브리지 PWM 인버터로 구성된 SSSC의 동특성 분석)

  • 한병문;박덕희;김성남
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.6
    • /
    • pp.296-302
    • /
    • 2001
  • This paper proposes a SSSC based on multi-bridge inverters. The dynamic characteristic of the proposed SSSC was analyzed by EMTP simulation and a scaled hardware model, assuming that the SSSC is inserted in the transmission line of the one-machine-infinite-bus power system. The proposed SSSC has 6 multi-bridge inverters per phase, which generates 13 pulses for each half period of power frequency. The proposed SSSC generates a quasi-sinusoidal output voltage by 90 degree phase shift to the line current. The proposed SSSC does not require the coupling transformer for voltage injection, and has a flexibility in operation voltage by increasing the number of series connection.

  • PDF

Dynamic Characteristic Analysis of 3-Level Half-bridge SSSC (3-레벨 반브리지로 구성된 SSSC의 동특성 분석)

  • 박상호;하요철;백승택;김희중;한병문
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.317-324
    • /
    • 2001
  • This paper proposes a SSSC based on 3-level half-bridge inverters. The dynamic characteristic of the proposed SSSC was analyzed by EMTP simulation and a scaled hardware model, assuming that the SSSC is inserted in the transmission line of the one-machine-infinite-but power system. The proposed SSC has six 3-level half-bridge inverters per phase, which operates in PWM mode. The proposed SSSC generates a quasi-sinusoidal output voltage by 90 degree phase shift to the line current. The proposed SSSC does not require the coupling transformer for voltage injection, and has a flexibility in operation voltage by increasing the number of series connection.

  • PDF

VSI FACTS Modeling Using Newton-Type Current Injection Method for Studying Power System Dynamics (전력시스템 동특성 해석을 위한 전압원 FACTS 기기의 Newton 전류 주입형 모델링에 관한 연구)

  • Park, Jung-Soo;Son, Kwang-M.;Jang, Gil-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.7
    • /
    • pp.281-289
    • /
    • 2006
  • Advanced controllers among Flexible AC Transmission System(FACTS) devices employ self-commutated switching converters, VSI (Voltage Sourced Inverters), as the synchronous voltage source. Such controllers are SSSC (Static Synchronous Series Compensator), STATCOM (Static Synchronous Compensator) and UPFC (Unified Power Flow Controller). UPFC is series-shunt combined controller. Its series and shunt inverters can be modeled as SSSC and STATCOM but the dependant relation between the inverters is very complex. For that reason, the complexity makes it difficult to develop the UPFC model by simply combining the SSSC and STATOM models when we apply the model for conventional power system dynamic simulation algorithm. Therefore, we need each relevant models of VSI type FACTS devices for power system analysis. This paper proposes a modeling approach which can be applied to modeling of VSI type FACTS devices. The proposed method using Newton-type current injection method can be used to make UPFC, SSSC, and STATCOM models. The proposed models are used for 2-area test system simulation, and the results verify their effectiveness.

Enhancement of Interface Flow Limit using Static Synchronous Series Compensators

  • Kim Seul-Ki;Song Hwa-Chang;Lee Byoung-Jun;Kwon Sae-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.313-319
    • /
    • 2006
  • This paper addresses improving the voltage stability limit of interface flow between two different regions in an electric power system using the Static Synchronous Series Compensator (SSSC). The paper presents a power flow analysis model of a SSSC, which is obtained from the injection model of a series voltage source inverter by adding the condition that the SSSC injection voltage is in quadrature with the current of the SSSC-installed transmission line. This model is implemented into the modified continuation power flow (MCPF) to investigate the effect of SSSCs on the interface flow. A methodology for determining the interface flow margin is simply briefed. As a case study, a 771-bus actual system is used to verify that SSSCs enhance the voltage stability limit of interface flow.