• Title/Summary/Keyword: SPMSM drive

Search Result 42, Processing Time 0.029 seconds

High Efficiency Drive of Dual Inverter Driven SPMSM with Parallel Split Stator

  • Lee, Yongjae;Ha, Jung-Ik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.216-224
    • /
    • 2013
  • This paper describes dual inverter drive for a fractional-slot concentrated winding permanent magnet synchronous machine (PMSM). PMSMs are widely used in many applications from small servo motors to few megawatts generators thanks to its high efficiency and torque density. Especially, fractional-slot concentrated winding PMSM is very popular in the applications where wide operation range is required because it shows very wide constant power speed ratios. High speed operation, however, requires lots of negative daxis current for reducing back-EMF regardless of output torque. Field weakening current does not contribute to the torque generation in surface mounted PMSM case and causes inverter and copper loss. To reduce the losses from field weakening current, this paper proposes PMSM with split stator and parallel dual inverter drive. Proposed parallel dual inverter drive reduces back-EMF and enables efficient drive at high speed and light load situation. Control strategy of proposed dual inverter system is established through loss analysis and simulation. Proposed concept is verified with practical experiment.

Analysis and Experimental Characterization of Low Speed Direct Drive Fractional Slot Concentrated Winding Surface Permanent Magnet Synchronous Motor with Consequent Pole Rotor

  • Chung, Shi-Uk;Chun, Yon-Do;Moon, Seok-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2057-2061
    • /
    • 2015
  • This paper describes analysis and experimental characterization of low speed direct drive fractional slot concentrated winding (FSCW) surface permanent magnet synchronous motor (SPMSM) with consequent pole (CP) rotor, for which studies have been recently performed. The proposed motor, which consists of 30 poles and 36 slots, is analyzed and characterized by extensive 2D finite element analysis (FEA) and together with 3D FEA for an appropriate PM overhang length design. The validity of the analysis is confirmed by the corresponding experiments which fully characterize the proposed motor with excellent agreement between the FEA and the experiments. Thermal stability is also experimentally examined to determine continuous operating points and instantaneous operating points of the proposed motor. It is highly expected that the proposed motor is applicable for low speed direct drive applications.

Capacitor Voltage Boosting and Balancing using a TLBC for Three-Level NPC Inverter Fed RDC-less PMSM Drives

  • Halder, Sukanta;Kotturu, Janardhana;Agarwal, Pramod;Srivastava, Satya Prakash
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.432-444
    • /
    • 2018
  • This paper presents a capacitor voltage balancing topology using a three-level boost converter (TLBC) for a neutral point clamped (NPC) three-level inverter fed surface permanent magnet synchronous motor drive (SPMSM). It enhanced the performance of the drive in terms of its voltage THD and torque pulsation. The main attracting feature of the proposed control is the boosting of the input voltage and at the same time the balancing of the capacitor voltages. This control also reduces the computational complexity. For the purpose of close loop vector control, a software based cost effective resolver to digital converter RDC-less estimation is implemented to calculate the speed and position. The proposed drive is simulated in the MATLAB/SIMULINK environment and an experimental investigation using dSPACE DS1104 validates the proposed drive system at different operating condition.

Development of a PMSM Drive System for Industrial Sewing Machine (침상침하용 재봉틀을 위한 PMSM 구동시스템 개발)

  • Kim, Sang-Hoon;Park, Nae-Chun
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.129-133
    • /
    • 2011
  • In this paper, a surface mounted permanent magnet synchronous motor(SPMSM) drive system for industrial sewing machine was developed. Even through a lowr-esolution encoder is used for a low cost, using a full order observer enables to estimate accurate speed and position. And it also compensates a disturbance torque caused by the belt between a load and a motor. In order to control precisely stop positions of a needle, a speed trajectory is calculated from the acceleration pattern which is obtained from the position reference. The performance of the developed system is verified by experimental results.

  • PDF

Design and Evaluation of a Multi-layer Interior PM Synchronous Motor for High-Speed Drive Applications

  • Kim, Sung-Il;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.405-412
    • /
    • 2016
  • In general, surface mounted PM synchronous motors (SPMSMs) are mainly adopted as a driving motor for high-speed applications, because they have high efficiency and high power density. However, the SPMSMs have some weak points such as the increase of magnetic reluctance and additional losses as a consequence of using a non-magnetic sleeve. Especially, the magneto-motive force (MMF) in the air-gap of the SPMSMs is weakened due to the magnetically increased resistance. For that reason, a large amount of PM is consumed to meet the required MMF. Nevertheless, it cannot help using the sleeve in order to maintain the mechanical integrity of a rotor assembly in high-speed rotation. Thus, in this paper, a multi-layer interior PM synchronous motor (IPMSM) not using the sleeve is presented and designed as an alternative of a SPMSM. Both motors are evaluated by test results based on a variety of characteristics required for an air blower system of a fuel cell electric vehicle.

Sensorless control of PMSM in low speed range using high frequency voltage injection (전압주입 방식을 이용한 PMSM 센서리스 제어에 관한 연구)

  • Yoon Seok-chae;Kim Jang-mok
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.119-122
    • /
    • 2003
  • This paper describes the sensorless technique for the surface-mounted permanent-magent synchronous motor(SPMSM or PMSM) drive based on magnetic saliency. The control technique is a sensorless control algorithm that injects the high frequency voltage to the stator terminal in order to estimate the rotor position and speed. The rotor position and speed for sensorless vector control is achieved by appropriate signal processing to extract the position information from the stator current in the low speed range including zero speed. Proposed sensorless algorithm using the double-band hysteresis controller and initial rotor position detection exhibits excellent reference tracking and increased robustness. Experimental results are presented to verify the feasibility of the proposed control schemes.

  • PDF

Sensorless Control for Three Phase Surface Mounted Permanent Magnet Synchronous Motor Drive System (3상 표면부착형 영구자석 동기전동기 센서리스 속도제어)

  • Son, Myeongsu;Moon, Jaeeun;Hong, Yeonjoo;Jeong, Yongjae;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.420-421
    • /
    • 2018
  • 본 논문에서는 표면부착형 영구자석 동기전동기(SPMSM)를 위한 센서리스 제어방법을 실험을 통해 검증하고자 한다. 동기전동기의 벡터제어를 위하여 엔코더나 레졸버를 이용하면 비용이 증가할 뿐만 아니라 유지 보수가 필요하기 때문에 동기전동기의 센서리스 모터제어 기법이 요구되고 있다. 또한, 동기전동기의 센서리스 모터 제어를 위해서는 정확한 회전자의 위치와 속도가 필요하므로 본 논문에서는 영구자석 동기전동기의 수학적 모델을 통하여 위치와 속도를 추정한다. 회전 중 발생하는 역기전력을 통해 추정 위치 오차를 얻으며, 추정 오차가 0이 되도록 추정기를 구성하여 이를 실험을 통해 검증하였다.

  • PDF

Implementation of a Robust Fuzzy Adaptive Speed Tracking Control System for Permanent Magnet Synchronous Motors

  • Jung, Jin-Woo;Choi, Han Ho;Lee, Dong-Myung
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.904-911
    • /
    • 2012
  • This paper presents a fuzzy adaptive speed controller that guarantees a fast dynamic behavior and a precise trajectory tracking capability for surfaced-mounted permanent magnet synchronous motors (SPMSMs). The proposed fuzzy adaptive control strategy is simple and easy to implement. In addition, the proposed speed controller is very robust to system parameter and load torque variations because it does not require any accurate parameter values. The global stability of the proposed control system is analytically verified. To evaluate the proposed fuzzy adaptive speed controller, both simulation and experimental results are shown under motor parameter and load torque variations on a prototype SPMSM drive system.

Input Power Estimation of an Inverter in AC Motor Drive System (교류 전동기 구동 시스템에서 인버터의 입력전력 추정)

  • Kim, Do-Hyun;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.376-377
    • /
    • 2019
  • 본 논문에서는 교류 전동기 구동 시스템에서 인버터의 입력전력 추정 기법을 제안하였다. 인버터의 입력전력 정보를 얻기 위해서는 DC link 전압 센서 및 입력전류 센서와 같은 측정 장치가 요구되는데, 전동기의 상전류 정보 및 인버터의 스위칭 패턴을 이용하면 입력전류 센서를 사용하지 않고 인버터의 입력전력을 추정할 수 있다. 1kW SPMSM(Surface mounted Permanent Magnet Synchronous Motor) 구동 시뮬레이션 및 실험을 통해 입력전력 추정 기법의 유효성을 확인하였다.

  • PDF

Structure Design and Implementation of AC Servo Motor Control Program (AC 서보모터 제어 프로그램 구조 설계 및 구현)

  • Kyungah Kim;Joon-Young Choi
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.5
    • /
    • pp.209-215
    • /
    • 2023
  • This study proposes an AC servo motor control program structure and its implementation method to efficiently integrate 13 types of additional compensation algorithms into the basic FOC (field-oriented control) algorithm program. Various compensation algorithms are necessary to enhance the stability and performance of machine tools by compensating for interference from disturbances and vibrations. Each compensation algorithm is implemented as a separate, independent function and called from a switch-case statement in the ISR (interrupt service routine) of the PWM (pulse-width modulation) device. The advantages of this approach include facilitating not only debugging and testing but also reducing the possibility of errors during the program development phase. Thus, it is easy to add and activate each specific compensation algorithm for the program update during the program operation phase. The implemented motor control program was experimented with a single-axis feed shaft testbed driven by a commercial AC servo motor control drive board and a 750 Watts SPMSM (surface-mounted permanent magnet synchronous motor), and the results verified its normal operation and performance improvement.