DOI QR코드

DOI QR Code

Structure Design and Implementation of AC Servo Motor Control Program

AC 서보모터 제어 프로그램 구조 설계 및 구현

  • Received : 2023.08.01
  • Accepted : 2023.10.08
  • Published : 2023.10.31

Abstract

This study proposes an AC servo motor control program structure and its implementation method to efficiently integrate 13 types of additional compensation algorithms into the basic FOC (field-oriented control) algorithm program. Various compensation algorithms are necessary to enhance the stability and performance of machine tools by compensating for interference from disturbances and vibrations. Each compensation algorithm is implemented as a separate, independent function and called from a switch-case statement in the ISR (interrupt service routine) of the PWM (pulse-width modulation) device. The advantages of this approach include facilitating not only debugging and testing but also reducing the possibility of errors during the program development phase. Thus, it is easy to add and activate each specific compensation algorithm for the program update during the program operation phase. The implemented motor control program was experimented with a single-axis feed shaft testbed driven by a commercial AC servo motor control drive board and a 750 Watts SPMSM (surface-mounted permanent magnet synchronous motor), and the results verified its normal operation and performance improvement.

Keywords

Acknowledgement

본 과제는 부산대학교 기본연구지원사업 (2년)에 의하여 연구되었음.

References

  1. L. N. Lopez de Lacalle, A. Lamikiz, "Machine Tools for High Performance Machining," Springer, 2009.
  2. S. H. Suh, S. K. Kang, I. Stroud, "Theory and Design of CNC Systems," Springer, 2008.
  3. H. W. Oh, "A Study on Servo Motor Control in Multi Pallet System," IEMEK Journal of Embedded Systems and Applications, Vol. 14, No. 6, pp. 339-346, 2019 (in Korean).
  4. J. Fleischer, B. Denkena, B. Winfough, M. Mori, "Workpiece and Tool Handling in Metal Cutting Machines," CIRP Annals, Vol. 55, No. 2, pp. 817-839, 2006. https://doi.org/10.1016/j.cirp.2006.10.009
  5. K. Cheng, "Machining Dynamics," Springer, 2009.
  6. I. U. Eun, H. S. Chee, J. W. Lee, "The Technical Trend and Future Development Direction of Machine Tools Feed Drive System by Patent Mapping," Journal of the Korean Society for Precision Engineering, Vol. 29, No. 5, pp. 510-515, 2012 (in Korean). https://doi.org/10.7736/KSPE.2012.29.5.510
  7. E. C. Jeon, Y. Hirota, M. Tsutsumi, S. Namgung, "An Improvement of Positioning Accuracy for CNC Machine Tools," Journal of the Korean Society of Precision Engineering, Vol. 11, No. 6, pp. 5-11, 1994 (in Korean).
  8. B. Yang, G. Zhang, Y. Ran, H. Yu, "Kinematic Modeling and Machining Precision Analysis of Multi-Axis CNC Machine Tools Based on Screw Theory," Mechanism and Machine Theory, Vol. 140, pp. 538-552, 2019. https://doi.org/10.1016/j.mechmachtheory.2019.06.021
  9. B. Nahid-Mobarakeh, F. Meibody-Tabar, F-M. Sargos, "Mechanical Sensorless Control of PMSM with Online Estimation of Stator Resistance," IEEE Transactions on Industry Applications, Vol. 40, No. 2, pp. 457-471, 2004. https://doi.org/10.1109/TIA.2004.824490
  10. T. H. Nguyen, D. C. Lee, "Deterioration Monitoring of DC-link Capacitors in AC Machine Drives by Current Injection," IEEE Transactions on Power Electronics, Vol. 30, No. 3, pp. 1126-1130, 2015. https://doi.org/10.1109/TPEL.2014.2339374
  11. W. He, M. M. Namazi, T. Li, R. Ortega, "A State Observer for Sensorless Control of Power Converters with Unknown Load Conductance," IEEE Transactions on Power Electronics, Vol. 37, No. 8, pp. 9187-9199, 2022. https://doi.org/10.1109/TPEL.2022.3157853
  12. Y. Shi, K. Sun, L. Huang, Y. Li, "Online Identification of Permanent Magnet Flux Based on Extended Kalman Filter for IPMSM Drive with Position Sensorless Control," IEEE Transactions on Industrial Electronics Vol. 59, No. 11, pp. 4169-4178, 2011.
  13. Z. Q. Zhu, D. Liang, K. Liu, "Online Parameter Estimation for Permanent Magnet Synchronous Machines: An Overview," IEEE Access, Vol. 9, pp. 59059-59084, 2021. https://doi.org/10.1109/ACCESS.2021.3072959
  14. Y. Inoue, Y. Kawaguchi, S. Morimoto, M. Sanada, "Performance Improvement of Sensorless IPMSM Drives in a Low-Speed Region Using Online Parameter Identification," IEEE Transactions on Industry Applications, Vol. 47, No. 2, pp. 798-804, 2010.
  15. W. Deng, C. Xia, Y. Yan, Q. Geng, T. Shi, "Online Multiparameter Identification of Surface-Mounted PMSM Considering Inverter Disturbance Voltage," IEEE Transactions on Energy Conversion, Vol. 32, No. 1, pp. 202-212, 2017. https://doi.org/10.1109/TEC.2016.2621130
  16. C. Lian, F. Xiao, J. Liu, S. Gao, "Parameter and VSI Nonlinearity Hybrid Estimation for PMSM Drives Based on Recursive Least Square," IEEE Transactions on Transportation Electrification, Vol. 32, No. 1, pp. 202-212, 2022.
  17. K. M. Cho, W. S. Oh, Y. T. Kim, H. J. Kim, "A New Switching Strategy for Pulse Width Modulation (PWM) Power Converters," IEEE Transactions on Industrial Electronics, Vol. 54, No. 1, pp. 330-337, 2007.
  18. J. S. Kim, S. M. Park, J. Y. Choi, "High-Speed and Precise Positioning Control Algorithm for CNC Machine Tool," Conference on Information and Control Systems (CICS 2021), The Korean Institute of Electrical Engineers, pp. 157-158, 2021 (in Korean).
  19. B. S. Kim, "Input Shaping for Servo Control of Machine Tools," Journal of the Korean Society for Precision Engineering, Vol. 28, No. 9, pp. 1011-1017, 2011 (in Korean).
  20. K. H. Nam, "AC Motor Control and Electrical Vehicle Applications," CRC press, 2019.
  21. M. A. Valenzuela, R .D. Lorenz, "Startup and Commissioning Procedures for Electronically Line-shafted Paper Machine Drives," IEEE Transactions on Industry Applications, Vol. 38, No. 4, pp. 966-973, 2002. https://doi.org/10.1109/TIA.2002.800566