• 제목/요약/키워드: SPL(Scanning Probe Lithography)

검색결과 9건 처리시간 0.028초

대면적 SPL(Scanning Probe Lithography) 시스템 제작 (Manufacturing of SPL system having a large scanning area)

  • 윤상준;김원효;성우경;박영근;황규호;정관수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.699-702
    • /
    • 2004
  • Next generation lithography technologies, such as EBL(Electron Beam Lithography), X-ray lithography, SPL(Scanning Probe Lithography), have been studied widely for getting over line width limitation of photolithography. Among the next generation lithography technologies, SPL has been highlighted because of its high resolution advantage. But is also has problem which are slow processing time and sample size limitation. The purpose of this study is complement of present SPL system. Brand new SPL system was made. SPL test was performed with the system in ultra thin PMMA(polymethlymethacrylate) film.

  • PDF

SPL에 의한 나노구조 제조 공정 연구 (Fabrication of nanometer scale patterning by a scanning probe lithography)

  • 류진화;김창석;정명영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.330-333
    • /
    • 2005
  • The fabrication of mold fur nano imprint lithography (NIL) is experimentally reported using the scanning probe lithography (SPL) technique, instead of the conventional I-beam lithography technique. The nanometer scale patterning structure is fabricated by the localized generation of oxide patterning on the silicon (100) wafer surface with a thin oxide layer, The fabrication method is based on the contact mode of scanning probe microscope (SPM) in air, The precision cleaning process is also performed to reach the low roughness value of $R_{rms}=0.084 nm$, which is important to increase the reproducibility of patterning. The height and width of the oxide dot are generated to be 15.667 nm and 209.5 nm, respectively, by applying 17 V during 350 ms.

  • PDF

SPL과 소프트 리소그래피를 이용한 나노 구조물 형성 연구 (Fabrication of Nanoscale Structures using SPL and Soft Lithography)

  • 류진화;김창석;정명영
    • 한국정밀공학회지
    • /
    • 제23권7호
    • /
    • pp.138-145
    • /
    • 2006
  • A nanopatterning technique was proposed and demonstrated for low cost and mass productive process using the scanning probe lithography (SPL) and soft lithography. The nanometer scale structure is fabricated by the localized generation of oxide patterning on the H-passivated (100) silicon wafer, and soft lithography was performed to replicate of nanometer scale structures. Both height and width of the silicon oxidation is linear with the applied voltagein SPL, but the growth of width is more sensitive than that of height. The structure below 100 nm was fabricated using HF treatment. To overcome the structure height limitation, aqueous KOH orientation-dependent etching was performed on the H-passivated (100) silicon wafer. Soft lithography is also performed for the master replication process. Elastomeric stamp is fabricated by the replica molding technique with ultrasonic vibration. We showed that the elastomeric stamp with the depth of 60 nm and the width of 428 nm was acquired using the original master by SPL process.

비접촉 SPL기법을 이용한 단결정 실리콘 웨이퍼 표면의 극초단파 펄스 전기화학 초정밀 나노가공 (Nanomachining on Single Crystal Silicon Wafer by Ultra Short Pulse Electrochemical Oxidation based on Non-contact Scanning Probe Lithography)

  • 이정민;김선호;김택현;박정우
    • 한국생산제조학회지
    • /
    • 제20권4호
    • /
    • pp.395-400
    • /
    • 2011
  • Scanning Probe Lithography is a method to localized oxidation on single crystal silicon wafer surface. This study demonstrates nanometer scale non contact lithography process on (100) silicon (p-type) wafer surface using AFM(Atomic force microscope) apparatuses and pulse controlling methods. AFM-based experimental apparatuses are connected the DC pulse generator that supplies ultra short pulses between conductive tip and single crystal silicon wafer surface maintaining constant humidity during processes. Then ultra short pulse durations are controlled according to various experimental conditions. Non contact lithography of using ultra short pulse induces electrochemical reaction between micro-scale tip and silicon wafer surface. Various growths of oxides can be created by ultra short pulse non contact lithography modification according to various pulse durations and applied constant humidity environment.

나노프로브 응용 기계-화학적 나노리소그래피 기술 (Nanoprobe-based Mechano-Chemical Scanning Probe Lithography Technology)

  • 성인하;김대은;신보성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1043-1047
    • /
    • 2003
  • With the advancement of micro-systems and nanotechnology, the need for ultra-precision fabrication techniques has been steadily increasing. In this paper, a novel nano-structure fabrication process that is based on the fundamental understanding of nano-scale tribological interaction is introduced. The process, which is called Mechano-Chemical Scanning Probe Lithography (MC-SPL), has two steps, namely, mechanical scribing for the removal of a resist layer and selective chemical etching on the scribed regions. Organic monolayers are used as a resist material, since it is essential for the resist to be as thin as possible in order to fabricate more precise patterns and surface structures. The results show that high resolution patterns with sub-micrometer scale width can be fabricated on both silicon and various metal surfaces by using this technique.

  • PDF

미세탐침기반 기계-화학적 리소그래피공정을 이용한 3차원 미세 구조물 제작에 관한 기초 연구

  • 박미석;성인하;김대은;장원석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.128-128
    • /
    • 2004
  • 나노 스케일의 구조물 제작에 있어서 기존의 리소그래피 공정들이 가지는 한계점을 극복하기 위해서 다양한 방식의 새로운 공정들이 개발되고 있다. 특히, 기계-화학적 가공공정을 이용한 미세탐침 기반의 나노리소그래피 기술(Mechano-Chemical Scaning Probe based Lithography; MC-SPL)은 기존의 포토리소그래피 공정의 단점을 극복하고, 보다 경제적이며 패턴 디자인 변경이 유연한 미세 패턴 제작 기술임이 확인되었다.(중략)

  • PDF

Fabrication of Micro/Nano-patterns using MC-SPL(Mechano-Chemical Scanning Probe Lithography) Process

  • Sung, In-Ha;Kim, Dae-Eun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권5호
    • /
    • pp.22-26
    • /
    • 2003
  • In this work, a new non-photolithographic micro-fabrication technique is presented. The motivation of this work is to overcome the demerits of the most commonly used photolithographic techniques. The micro-fabrication technique presented in this work is a two-step process which consists of mechanical scribing followed by chemical etching. This method has many advantages over other micro-fabrication techniques since it is simple, cost-effective, rapid, and flexible. Also, the technique can be used to obtain a metal structure which has sub-micrometer width patterns. In this paper, the concept of this method and its application to microsystem technology are described.

미세탐침기반 기계-화학적 리소그래피공정에 의한 마이크로/나노패턴 제작 (Fabrication ofMicro/Nano-patterns using MC-SPL (Mechano-Chemical Scanning Probe Lithography) Process)

  • 성인하;김대은
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.228-233
    • /
    • 2002
  • In this work, a new non-photolithographic micro-fabrication technique is presented. The motivation of this work is to overcome the demerits of the most commonly used photolithographic techniques. The micro-fabrication technique presented in this work is a two-step process which consists of mechanical scribing followed by chemical etching. This method has many advantages over other micro-fabrication techniques since it is simple, cost-effective, rapid, and flexible. Also, the technique can be used to obtain a metal structure which has sub-micrometer width patterns. In this paper, the concept of this method and its application to microsystem technology are described.