• Title/Summary/Keyword: SPH method

Search Result 107, Processing Time 0.027 seconds

MODELING UNCERTAINTY IN QUASI-HYDROSTATIC ISOTHERMAL SELF-GRAVITATING SLAB

  • Nejad-Asghar, Mohsen
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • The smoothed particle hydrodynamics (SPH) method is applied to construct the dispersion of fluctuations in quasi-hydrostatic configuration of an isothermal self-gravitating slab. The uncertainty of the implementation is evaluated, and a novel technique (acceleration error) is proposed to weaken this uncertainty. The two-fluid quasi-hydrostatic diffusion of small fluctuations is used to support the importance of the acceleration error. The results show that the uncertainty converges to a few percent by increasing of the SPH particle numbers. Considering the acceleration error weakens the uncertainty, and prohibits the serious dynamical consequences in slow dispersion of fluctuation in the quasi-hydrostatic evolution of the slab.

SPH-Based Wave Tank Simulations (SPH 기법 기반의 파동수조 시뮬레이션)

  • Lee, Sangmin;Kim, Mujong;Ko, Kwonhwan;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2021
  • Recently, large-scale offshore and coastal structures have been constructed owing to the increasing interest in eco-friendly energy development. To achieve this, precise simulations of waves are necessary to ensure the safe operations of marine structures. Several experiments are required in the field to understand the offshore wave; however, in terms of scale, it is difficult to control variables, and the cost is significant. In this study, numerical waves under various wave conditions are produced using a piston-type wavemaker, and the produced wave profiles are verified by comparing with the results from a numerical wave tank (NWT) modeled using the smoothed particle hydrodynamics (SPH) method and theoretical equations. To minimize the effect by the reflected wave, a mass-weighted damping zone is set at the right end of the NWT, and therefore, stable and uniform waves are simulated. The waves are generated using the linear and Stokes wave theories, and it is observed that the numerical wave profiles calculated by the Stokes wave theory yield high accuracy. When the relative depth is smaller than two, the results show good agreement irrespective of the wave steepness. However, when the relative depth and wave steepness are larger than 2 and 0.04, respectively, the errors are negligible if the measurement position is close to the excitation plate. However, the error is 10% or larger if the measurement position is away from the excitation location. Applicable target wave ranges are confirmed through various case studies.

A Verification Method for EJB Architecture (SPIN을 이용한 EJB 적합성 검증)

  • 주운기;김중배
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.11a
    • /
    • pp.135-138
    • /
    • 2003
  • This paper considers a verification problem on EJB(Enterprise JavaBeans). We select SPIN as a automatic verification tool and consider an instance management specification of CMP(Container Managed-Persistence) entity bean. By showing the verification procedure, we can conclude that SPH can be used to verify EJB systems.

  • PDF

Position Based Triangulation for High Performance Particle Based Fluid Simulation (위치 기반 삼각화를 이용한 입자 기반 유체 시뮬레이션 가속화 기법)

  • Hong, Manki;Im, Jaeho;Kim, Chang-Hun;Byun, Hae Won
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • This paper proposes a novel acceleration method for particle based large scale fluid simulation. Traditional particle-based fluid simulation has been implemented by interacting with physical quantities of neighbor particles through the Smoothed Particle Hydrodynamics(SPH) technique[1]. SPH method has the characteristic that there is no visible change compared to the computation amount in a part where the particle movement is small, such as a calm surface or inter-fluid. This becomes more prominent as the number of particles increases. Previous work has attempted to reduce the amount of spare computation by adaptively dividing each part of the fluid. In this paper, we propose a technique to calculate the motion of the entire particles by using the physical quantities of the near sampled particles by sampling the particles inside the fluid at regular intervals and using them as reference points of the fluid motion. We propose a technique to adaptively generate a triangle map based on the position of the sampled particles in order to efficiently search for nearby particles, and we have been able to interpolate the physical quantities of particles using the barycentric coordinate system. The proposed acceleration technique does not perform any additional correction for two classes of fluid particles. Our technique shows a large improvement in speed as the number of particles increases. The proposed technique also does not interfere with the fine movement of the fluid surface particles.

Bird Strike Analysis and Test Report of Dummy and Real Blade Antenna (더미 및 실 블레이드 안테나 조류충돌 해석 및 시험)

  • Jeong, Hanui
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.24-31
    • /
    • 2018
  • The objectives of this study is to carry out Bird strike analysis and tests of a blade antenna of aircraft. FEMs (Finite Element Models) were created for the analysis, while dummy and real antennas were used for the bird strike tests. In the analysis, birds were modeled with SPH (Smooth Particle Hydrodynamics) method, and the behaviors of the bird, antenna, and joint structure between antenna and aircraft fuselage were simulated with the FSI (Fluid-Structure Interaction) method. After the bird strike test was performed, the results of the analysis and test showed that they had a positive relationship. The damage of antenna and bolted joint was checked, and the structural integrity of the airframe was proved.

Dynamic Analysis of AP1000 Shield Building Considering Fluid and Structure Interaction Effects

  • Xu, Qiang;Chen, Jianyun;Zhang, Chaobi;Li, Jing;Zhao, Chunfeng
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.246-258
    • /
    • 2016
  • The shield building of AP1000 was designed to protect the steel containment vessel of the nuclear reactor. Therefore, the safety and integrity must be ensured during the plant life in any conditions such as an earthquake. The aim of this paper is to study the effect of water in the water tank on the response of the AP1000 shield building when subjected to three-dimensional seismic ground acceleration. The smoothed particle hydrodynamics method (SPH) and finite element method (FEM) coupling method is used to numerically simulate the fluid and structure interaction (FSI) between water in the water tank and the AP1000 shield building. Then the grid convergence of FEM and SPH for the AP1000 shield building is analyzed. Next the modal analysis of the AP1000 shield building with various water levels (WLs) in the water tank is taken. Meanwhile, the pressure due to sloshing and oscillation of the water in the gravity drain water tank is studied. The influences of the height of water in the water tank on the time history of acceleration of the AP1000 shield building are discussed, as well as the distributions of amplification, acceleration, displacement, and stresses of the AP1000 shield building. Research on the relationship between the WLs in the water tank and the response spectrums of the structure are also taken. The results show that the high WL in the water tank can limit the vibration of the AP1000 shield building and can more efficiently dissipate the kinetic energy of the AP1000 shield building by fluid-structure interaction.

Biological activity of crude polyphenol fractions of Cedrela sinensis isolated using different extraction methods (참죽의 추출방법에 따른 폴리페놀 분획의 생리기능성)

  • Oh, Min Hui;Yoon, Kyung Young
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.438-443
    • /
    • 2017
  • The biological activity of crude polyphenol fractions (WphF, EphE, VphF, and SphF) extracted from Cedrela sinensis using hot water, ethanol, and enzymes such as Viscozyme and Shearzyme was examined in this study. The yield of VphF was the highest (43.44%) among all fractions. The total polyphenol and flavonoid content of the fractions were highest after ethanol extraction (447.98 and 337.49 mg/g, respectively). Fractions obtained after hot water and ethanol treatment showed high antioxidant activity. All fractions, except for WphF, showed a significantly higher ${\alpha}$-glucosidase inhibitory activity than the acarbose. EphF and WphF showed the high acetylcholinesterase inhibition activity. All fractions showed more than 50% tyrosinase inhibition activity at 2 mg/mL concentration. According to these results, the crude polyphenol fractions from C. sinensis showed high antioxidative, ${\alpha}$-glucosidase inhibitory, and tyrosinase inhibitory activities. This study suggests that crude polyphenol fractions from C. sinensis, especially the WphF and EphF fractions, are good sources of functional food.

Influence of Impact from Anti-Aircraft Bullet on Rotorcraft Fuel Tank Assembly

  • Kim, Sung Chan;Kim, Hyun Gi
    • International Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Military rotorcrafts are constantly exposed to risk from bullet impacts because they operate in a battle environment. Because bullet impact damage can be deadly to crews, the fuel tanks of military rotorcraft must be designed taking extreme situations into account. Fuel tank design factors to be considered include the internal fluid pressure, the structural stress on the part impacted, and the kinetic energy of bullet strikes. Verification testing using real objects is the best way to obtain these design data effectively, but this imposes substantial burdens due to the huge cost and necessity for long-term preparation. The use of various numerical simulation tests at an early design stage can reduce the risk of trial-and-error and improve the prediction of performance. The present study was an investigation of the effects of bullet impacts on a fuel tank assembly using numerical simulation based on SPH (smoothed particle hydrodynamics), and conducted using the commercial package, LS-DYNA. The resulting equivalent stress, internal pressure, and kinetic energy of the bullet were examined in detail to evaluate the possible use of this numerical method to obtain configuration design data for the fuel tank assembly.

Bird Strike Analysis and Test of Composite Aircraft Radome (항공기 복합재 레이돔에 대한 조류충돌해석 및 시험)

  • Won, Moon-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.319-325
    • /
    • 2019
  • The main purpose of this study is to compare the bird strike analysis result of the radome composed of composite laminate and sandwich structure attached to aircraft with test result. First of all, we generated bird model which has water properties through SPH(Smoothed Particle Hydrodynamics) method. And then bird strike analysis was conducted with initial velocity of bird measured from bird strike test. From analysis result we investigated whether structural failure occurred or not onto the radome and compare maximum displacement of the radome structure with test result. Also reliability of numerical analysis model was confirmed through time-dependent pressure trend on this collision process matched existing research result. Furthermore, we confirmed that failure behavior of the radome can be affected by density of the particles in the bird model.

Application of a mesh-free method to modelling brittle fracture and fragmentation of a concrete column during projectile impact

  • Das, Raj;Cleary, Paul W.
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.933-961
    • /
    • 2015
  • Damage by high-speed impact fracture is a dominant mode of failure in several applications of concrete structures. Numerical modelling can play a crucial role in understanding and predicting complex fracture processes. The commonly used mesh-based Finite Element Method has difficulties in accurately modelling the high deformation and disintegration associated with fracture, as this often distorts the mesh. Even with careful re-meshing FEM often fails to handle extreme deformations and results in poor accuracy. Moreover, simulating the mechanism of fragmentation requires detachment of elements along their boundaries, and this needs a fine mesh to allow the natural propagation of damage/cracks. Smoothed Particle Hydrodynamics (SPH) is an alternative particle based (mesh-less) Lagrangian method that is particularly suitable for analysing fracture because of its capability to model large deformation and to track free surfaces generated due to fracturing. Here we demonstrate the capabilities of SPH for predicting brittle fracture by studying a slender concrete structure (column) under the impact of a high-speed projectile. To explore the effect of the projectile material behaviour on the fracture process, the projectile is assumed to be either perfectly-elastic or elastoplastic in two separate cases. The transient stress field and the resulting evolution of damage under impact are investigated. The nature of the collision and the constitutive behaviour are found to considerably affect the fracture process for the structure including the crack propagation rates, and the size and motion of the fragments. The progress of fracture is tracked by measuring the average damage level of the structure and the extent of energy dissipation, which depend strongly on the type of collision. The effect of fracture property (failure strain) of the concrete due to its various compositions is found to have a profound effect on the damage and fragmentation pattern of the structure.