Browse > Article
http://dx.doi.org/10.12989/cac.2015.16.6.933

Application of a mesh-free method to modelling brittle fracture and fragmentation of a concrete column during projectile impact  

Das, Raj (Department of Mechanical Engineering, University of Auckland)
Cleary, Paul W. (CSIRO Mathematics, Informatics and Statistics)
Publication Information
Computers and Concrete / v.16, no.6, 2015 , pp. 933-961 More about this Journal
Abstract
Damage by high-speed impact fracture is a dominant mode of failure in several applications of concrete structures. Numerical modelling can play a crucial role in understanding and predicting complex fracture processes. The commonly used mesh-based Finite Element Method has difficulties in accurately modelling the high deformation and disintegration associated with fracture, as this often distorts the mesh. Even with careful re-meshing FEM often fails to handle extreme deformations and results in poor accuracy. Moreover, simulating the mechanism of fragmentation requires detachment of elements along their boundaries, and this needs a fine mesh to allow the natural propagation of damage/cracks. Smoothed Particle Hydrodynamics (SPH) is an alternative particle based (mesh-less) Lagrangian method that is particularly suitable for analysing fracture because of its capability to model large deformation and to track free surfaces generated due to fracturing. Here we demonstrate the capabilities of SPH for predicting brittle fracture by studying a slender concrete structure (column) under the impact of a high-speed projectile. To explore the effect of the projectile material behaviour on the fracture process, the projectile is assumed to be either perfectly-elastic or elastoplastic in two separate cases. The transient stress field and the resulting evolution of damage under impact are investigated. The nature of the collision and the constitutive behaviour are found to considerably affect the fracture process for the structure including the crack propagation rates, and the size and motion of the fragments. The progress of fracture is tracked by measuring the average damage level of the structure and the extent of energy dissipation, which depend strongly on the type of collision. The effect of fracture property (failure strain) of the concrete due to its various compositions is found to have a profound effect on the damage and fragmentation pattern of the structure.
Keywords
mesh-free method; smoothed particle hydrodynamics; concrete; fracture; impact;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aliabadi, M.H. and Rooke, D.P. (1991), Numerical Fracture Mechanics, Computational Mechanics Publications and Kluwer Academic Publishers.
2 Bonet, J. and Kulasegaram, S. (2001), "Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods", Int. J. Numer. Meth. Eng., 52(11), 1203-1220.   DOI
3 Cedric, T., Janssen, L.P.B.M. and Pep, E. (2005), "Smoothed particle hydrodynamics model for phase separating fluid mixtures. I. General equations", Physical Review E (Statistical, nonlinear, and soft matter Physics), 72(1), 016713.   DOI
4 Chen, J.K., Beraun, J.E. and Jih, C.J. (1999), "Improvement for tensile instability in smoothed particle hydrodynamics", Comput. Mech., 23(4), 279-287.   DOI
5 Cleary, P.W. (1998), "Modelling confined multi-material heat and mass flows using SPH", Appl. Math. Model., 22(12), 981-993.   DOI
6 Cleary, P.W. (2010a), "Elastoplastic deformation during projectile-wall collision", Appl. Math. Model., 34(2), 266-283.   DOI
7 Cleary, P.W. (2010b), "Extension of SPH to predict feeding, freezing and defect creation in low pressure die casting", Appl. Math. Model., 34(11), 3189-3201.   DOI
8 Cleary, P.W. and Das, R. (2010a), "The potential for SPH modelling of solid deformation and fracture", IUTAM symposium on theoretical, Computational and modelling aspects of inelastic media, B.D. Reddy, Springer Netherlands, Volume 11, pp. 287-296.
9 Cleary, P.W. and Monaghan, J.J. (1999), "Conduction modelling using smoothed particle hydrodynamics", J. Comput. Phys., 148(1), 227-264.   DOI
10 Cleary, P., Ha, J., Alguine, V. and Nguyen, T. (2002), "Flow modelling in casting processes", Appl. Math. Model., 26(2), 171-190.   DOI
11 Cleary, P.W., Ha, J., Prakash, M. and Nguyen, T. (2006a), "3D SPH flow predictions and validation for high pressure die casting of automotive components", Appl. Math. Model., 30(11), 1406-1427.   DOI
12 Cleary, P.W., Prakash, M. and Ha, J. (2006b), "Novel applications of smoothed particle hydrodynamics (SPH) in metal forming", J. Mater. Process. Tech., 177(1-3), 41-48.   DOI
13 Cleary, P.W., Prakash, M., Ha, J., Stokes, N. and Scott, C. (2007), "Smooth particle hydrodynamics: status and future potential", Prog. Comput. Fluid Dy., 7(2-4), 70-90.   DOI
14 Cleary, P.W., Prakash, M., Das, R. and Ha, J. (2012), "Modelling of metal forging using SPH", Appl. Math. Model., 36(8), 3836-3855.   DOI
15 Das, R. and Cleary, P.W. (2006), "Uniaxial compression test and stress wave propagation modelling using SPH", Proceedings of the Fifth International Conference on Computational Fluid Dynamics in the Process Industries. Melbourne, Australia,
16 Das, R. and Cleary, P.W. (2010), "Effect of rock shapes on brittle fracture using smoothed particle hydrodynamics", Theor. Appl. Fract. Mec., 53(1), 47-60.   DOI
17 Das, R. and Cleary, P.W. (2013), "A mesh-free approach for fracture modelling of gravity dams under earthquake", Int. J. Fracture, 179(1-2), 9-33.   DOI
18 Das, R. and Cleary, P.W. (2015a), "Evaluation of accuracy and stability of the classical SPH method under uniaxial compression", J. Sci. Comput., 64(3), 858-897.   DOI
19 Das, R. and Cleary, P.W. (2015b), "Novel application of the mesh-free SPH method for modelling thermo-mechanical responses in arc welding", Int. J. Mech. Mater. D., 11(3), 337-355.   DOI
20 Davison, L. and Stevens, A.L. (1973), "Thermomechanical constitution of spalling elastic bodies", J. Appl. Phys., 44(2), 668-674.   DOI
21 Dyka, C.T. and Ingel, R.P. (1995), "An approach for tension instability in smoothed particle hydrodynamics", Comput. Struct., 57(4), 573-580.   DOI
22 Dyka, C.T., Randles, P.W. and Ingel, R.P. (1997), "Stress points for tension instability in SPH", Int. J. Numer. Meth. Eng., 40(13), 2325-2341.   DOI
23 Eftekhari, M. and Mohammadi, S. (2015), "Multiscale dynamic fracture behavior of the carbon nanotube reinforced concrete under impact loading", Int. J. Impact Eng. [In Press]
24 Fagan, T., Das, R., Lemiale, V. and Estrin, Y. (2012), "Modelling of equal channel angular pressing using a mesh-free method", J. Mater. Sci., 47(11), 4514-4519.   DOI
25 Fahrenthold, E.P. and Yew, C.H. (1995), "Hydrocode simulation of hypervelocity impact fragmentation", Int. J. Impact Eng., 17(1-3), 303-310.   DOI
26 Fang, Z. and Harrison, J.P. (2001), "Numerical analysis of progressive fracture and associated behaviour of mine pillars by use of a local degradation model", Transactions of the Institution of Mining and Metallurgy, Section A: Mining Industry, 111(1), 59-72.
27 Fang, J., Owens, R.G., Tacher, L. and Parriaux, A. (2006), "A numerical study of the SPH method for simulating transient viscoelastic free surface flows", J. Non-newton Fluid, 139(1-2), 68-84.   DOI
28 Fernandez-Mendez, S., Bonet, J. and Huerta, A. (2005), "Continuous blending of SPH with finite elements", Comput. Struct., 83(17-18), 1448-1458.   DOI
29 Fujiwara, A. (1989), "Experiments and scaling laws for catastrophic collisions", Asteroids Ii, 240-265.
30 Fujiwara, G. (1994), "Review of fracture mechanics for aircraft structures", Zairyo/J. Soc. Mater. Sci., Japan 43(493), 1188-1194.   DOI
31 Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics - Theory and application to non-spherical stars", MNRAS 181(3), 375-389.   DOI
32 Grady, D.E. and Kipp, M.E. (1980), "Continuum modelling of explosive fracture in oil shale", Int. J. Rock Mech. Min., 17(3), 147-157.   DOI
33 Grady, D.E., Kipp, M.E. and Smith, C.S. (1980), "Explosive fracture studies on oil shale", Soc. Petro. Eng. J., 20(5), 349-356.   DOI
34 Gray, J.P. and Monaghan, J.J. (2004), "Numerical modelling of stress fields and fracture around magma chambers", J. Volcanol. Geoth. Res., 135(3), 259-283.   DOI
35 Gray, J.P., Monaghan, J.J. and Swift, R.P. (2001), "SPH elastic dynamics", Comput. Method. Appl. M., 190(49-50), 6641-6662.   DOI
36 Harrison, S. and Cleary, P. (2014), "Towards modelling of fluid flow and food breakage by the teeth in the oral cavity using smoothed particle hydrodynamics (SPH)", Eur. Food Res. Technol., 238(2), 185-215.   DOI
37 Hu, S., Zhang, X. and Xu, S. (2015), "Effects of loading rates on concrete double-K fracture parameters", Eng. Fract. Mech., 149, 58-73.   DOI
38 Huang, Y., Yang, Z., Ren, W., Liu, G. and Zhang, C. (2015), "3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model", Int. J. Solids. Struct., 67-68, 340-352.   DOI
39 Imaeda, Y. and Inutsuka, S.i. (2002), "Shear flows in smoothed particle hydrodynamics", Astrophys. J., 569(1), 501-518.   DOI
40 Ju, J., Jiang, X. and Fu, X. (2007), "Fracture analysis for damaged aircraft fuselage subjected to blast", Key Eng. Mater., 348-349, 705-708.   DOI
41 Karekal, S., Das, R., Mosse, L. and Cleary, P.W. (2011), "Application of a mesh-free continuum method for simulation of rock caving processes", Int. J. Rock Mech. Min., 48(5), 703-711.   DOI
42 Kleine, T., La Pointe, P. and Forsyth, B. (1997), "Realizing the potential of accurate and realistic fracture modeling in mining", Int. J. Rock Mech. Min., 34(3-4), 661.   DOI
43 Kulasegaram, S., Bonet, J., Lewis, R.W. and Profit, M. (2003), "High pressure die casting simulation using a Lagrangian particle method", Commun. Numer. Meth. En., 19(9), 679-687.   DOI
44 Kumar, S. and Barai, S.V. (2010), "Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function", Fatigue Fract. Eng. M., 33(10), 645-660.   DOI
45 Lemiale, V., King, P.C., Rudman, M., Prakash, M., Cleary, P.W., Jahedi, M.Z. and Gulizia, S. (2014), "Temperature and strain rate effects in cold spray investigated by smoothed particle hydrodynamics", Surf. Coat. Tech., 254, 121-130.   DOI
46 Libersky, L.D. and Petschek, A.G. (1990), "Smooth particle hydrodynamics with strength of materials", Advances in the Free-Lagrange Method, Springer, Berlin, Germany.
47 Liu, W.K., Jun, S., Li, S., Adee, J. and Belytschko, T. (1995), "Reproducing kernel particle methods for structural dynamics", Int. J. Numer. Meth. Eng., 38(10), 1655-1679.   DOI
48 Liu, Z.S., Swaddiwudhipong, S. and Koh, C.G. (2004), "High velocity impact dynamic response of structures using SPH method", Int. J. Comput. Eng. Sci., 5(2), 315-326.   DOI
49 Lucy, L.B. (1977), "A numerical approach to the testing of the fission hypothesis", Astron. J., 82, 1013-1024.   DOI
50 Melosh, H.J. (1985), "Ejection of rock fragments from planetary bodies", Geology, 13(2), 144-148.   DOI
51 Melosh, H.J. and Collins, G.S. (2005), "Meteor crater formed by low-velocity impact", Nature, 434(7030), 157.   DOI
52 Melosh, H.J., Ryan, E.V. and Asphaug, E. (1992), "Dynamic fragmentation in impacts: hydrocode simulation of laboratory impacts", J. Geophys. Res., 97(E9), 14735-14759.   DOI
53 Mitchell, R.J. (1993), "Physical modelling of fracture and flow in mine backfills", Proceedings of the International Congress on Mine Design, Kingston, ON, Canada, August.
54 Mok, H., Chiu, W.K., Peng, D., Sowden, M. and Jones, R. (2007), "Rail wheel removal and its implication on track life: a fracture mechanics approach", Theor. Appl. Fract. Mec., 48(1), 21-31.   DOI
55 Monaghan, J.J. (1992), "Smoothed particle hydrodynamics", Ann. Rev. Astron. Astrophys., 30, 543-574.   DOI
56 Monaghan, J.J. (1994), "Simulating free surface flows with SPH", J. Comput. Phys., 110(2), 399-406.   DOI
57 Monaghan, J.J. (2000), "SPH without a tensile instability", J. Comput. Phys., 159(2), 290-311.   DOI
58 Monaghan, J.J. (2005), "Smoothed particle hydrodynamics", Rep. Prog. Phys., 68, 1703-1759.   DOI
59 Morrison, R.D. and Cleary, P.W. (2004), "Using DEM to model ore breakage within a pilot scale sag mill", Miner. Eng., 17(11-12), 1117-1124.   DOI
60 Napier, J.A.L. (1990), "Modelling of fracturing near deep level gold mine excavations using a displacement discontinuity approach", International Conference on Mechanics of Jointed and Faulted Rock, Vienna, Austria
61 Pierazzo, E. and Melosh, H.J. (2000), "Understanding oblique impacts from experiments, observations, and modeling", Ann. Rev. Inc., 28, 141-167, Palo Alto, CA, USA.
62 Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock. Mech. Min., 41(8), 1329-1364.   DOI
63 Prakash, M. and Cleary, P. (2015), "Modelling highly deformable metal extrusion using SPH", Comput. Particle Mech., 2(1), 19-38.   DOI
64 Randles, P.W. and Libersky, L.D. (2000), "Normalized SPH with stress points", Int. J. Numer. Method. Eng., 48(10), 1445-1462.   DOI
65 Rezaie, F. and Farnam, S.M. (2015), "Fracture mechanics analysis of pre-stressed concrete sleepers via investigating crack initiation length", Eng. Fail. Anal., 58(Part 1), 267-280.   DOI
66 Selman, E., Ghiami, A. and Alver, N. (2015), "Study of fracture evolution in FRP-strengthened reinforced concrete beam under cyclic load by acoustic emission technique: An integrated mechanical-acoustic energy approach", Constr. Build. Mater., 95, 832-841.   DOI
67 Sharir, Y., Stone, D.H. and Pellini, W.S. (1982), "Fracture analysis of cast steel components in rail vehicles", Gaitherburg, MD, USA, NBS, Washington, DC, USA.
68 Shockey, D.A., Curran, D.R., Seaman, L., Rosenberg, J.T. and Petersen, C.F. (1974), "Fragmentation of rock under dynamic loads", Int. J. Rock Mech. Min., 11(8), 303-317.   DOI
69 Skarzynski, L., Nitka, M. and Tejchman, J. (2015), "Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray ${\mu}CT$ images of internal structure", Eng. Fract. Mech., 147, 13-35.   DOI
70 Swegle, J.W., Hicks, D.L. and Attaway, S.W. (1995), "Smoothed particle hydrodynamics stability analysis", J. Comput. Phys., 116(1), 123-134.   DOI
71 Tait, R.B. and Emslie, C. (2005), "The use of fracture mechanics in failure analysis in the offshore diamond mining industry", Eng. Fail. Anal., 12(6 SPEC ISS), 893-905.   DOI
72 Takabatake, H., Nonaka, T. and Tanaki, T. (2005), "Numerical study of fracture propagating through column and brace of ashiyahama residential building in Kobe Earthquake", Struct. Des. Tall Spec., 14(2), 91-105.   DOI
73 Thorne, B.J., Hommert, P.J. and Brown, B. (1990), "Experimental and computational investigation of the fundamental mechanisms of cratering", 3rd International Symposium on Rock Fragmentation by Blasting, Brisbane, Australia.
74 Uetani, K. and Tagawa, H. (1999), "Earthquake response analysis of steel building frames considering brittle fractures at member-ends", Structures Congress - Proceedings, 406-409.
75 Vidal, Y., Bonet, J. and Huerta, A. (2007), "Stabilized updated lagrangian corrected SPH for explicit dynamic problems", Int. J. Numer. Meth. Eng., 69(13), 2687-2710.   DOI
76 Vignjevic, R., Campbell, J. and Libersky, L. (2000), "A treatment of zero-energy modes in the smoothed particle hydrodynamics method", Comput. Method. Appl. M., 184(1), 67-85.   DOI
77 Wang, L., Brust, F.W. and Atluri, S.N. (1997), "Elastic-plastic finite element alternating method (EPFEAM) and the prediction of fracture under WFD conditions in aircraft structures. Part II: Fracture and the T*-integral parameter", Comput. Mech., 19(5), 370-379.   DOI
78 Wen, Z., Shiyue, W. and Wancheng, Z. (2005), "The failure and falling of the rock mass in the underground mining", Key Eng. Mater., 297-300, 2586-2591.   DOI
79 Wilkins, J.L. (1964), "Calculation of elastic-plastic flow", Methods of Computational Physics, New York, Academic Press, 8, 211-263.
80 Wingate, C.A. and Fisher, H.N. (1993), "Strength modeling in SPHC", Los Alamos National Laboratory.
81 Yu, K., Yu, J., Lu, Z. and Chen, Q. (2015), "Determination of the softening curve and fracture toughness of high-strength concrete exposed to high temperature", Eng. Fract. Mech., 149, 156-169.   DOI