DOI QR코드

DOI QR Code

Bird Strike Analysis and Test of Composite Aircraft Radome

항공기 복합재 레이돔에 대한 조류충돌해석 및 시험

  • Received : 2019.01.22
  • Accepted : 2019.04.13
  • Published : 2019.05.01

Abstract

The main purpose of this study is to compare the bird strike analysis result of the radome composed of composite laminate and sandwich structure attached to aircraft with test result. First of all, we generated bird model which has water properties through SPH(Smoothed Particle Hydrodynamics) method. And then bird strike analysis was conducted with initial velocity of bird measured from bird strike test. From analysis result we investigated whether structural failure occurred or not onto the radome and compare maximum displacement of the radome structure with test result. Also reliability of numerical analysis model was confirmed through time-dependent pressure trend on this collision process matched existing research result. Furthermore, we confirmed that failure behavior of the radome can be affected by density of the particles in the bird model.

본 논문의 목적은 항공기에 장착되는 복합재 라미네이트 및 샌드위치구조를 가지는 레이돔에 대한 조류충돌해석을 수행하고 해석결과와 시험결과를 비교 및 분석하기 위함이다. 먼저 SPH(Smoothed Particle Hydrodynamics)법을 통해 물의 특성을 가지는 조류를 모델링하였으며, 조류충돌시험을 통해 조류가 충돌할 때의 속도를 입력하여 조류충돌해석을 수행하였다. 해석결과를 통해 레이돔의 파손 여부를 조사하고 최대 변형량을 시험결과와 비교하였으며 충돌과정에서의 압력변화추이가 기 연구되었던 결과와 일치함을 확인하였고, 이를 통해 수치해석모델의 신뢰성을 확보하였다. 또한 조류모델을 이루는 입자의 밀도가 레이돔의 파손 형상에 영향을 미친다는 사실을 확인하였다.

Keywords

References

  1. Wright, S. E., and Dolbeer, R. A., "Percentage of wildlife strikes reported and species identified under a voluntary reporting system," 2005 Bird Strike Committee-USA/Canada 7th Annual Meeting, Vancouver, BC, 2005, p.11.
  2. Park, C. Y., Jang, B. W., Kim, J. H., Kim, C. G., and Jun, S. M., "Bird strike event monitoring in a composite UAV wing using high speed optical fiber sensing system," Composites Science and Technology, Vol. 72, No. 4, 2012, pp.498-505. https://doi.org/10.1016/j.compscitech.2011.12.008
  3. Wilbeck, J. S., "Impact behavior of low strength projectiles," Air Force Materials Lab Wright-Patterson AFB OH, No. AFML-TR-77-134, 1978.
  4. Wilbeck, J. S., and Rand, J. L., "The development of a substitute bird model," Journal of Engineering for Power, Vol. 103, No. 4, 1981, pp. 725-730. https://doi.org/10.1115/1.3230795
  5. Airoldi, A., and Cacchione, B., "Modelling of impact forces and pressures in Lagrangian bird strike analyses," International Journal of Impact Engineering, Vol. 32, No. 10, 2006, pp.1651-1677. https://doi.org/10.1016/j.ijimpeng.2005.04.011
  6. Kong, C. D., and Lee, J. H., "A study on the structural behavior for the design of the small aircraft composite propeller blade by considering bird strike impact," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 25, No. 4, 1997, pp.72-85.
  7. Nizampatnam, L. S., "Models and methods for bird strike load predictions," Doctoral dissertation, Wichita State University, 2007.
  8. Moon, C. O., Woo, J. H., Oh, T. S., Hwang, C. H., and Park, C. Y., "Assessment of birdstrike resistant aircraft windshield," Journal of The Korean Society for Aeronautical and space Sciences, Vol. 24, No. 2, 1996, pp.95-105.
  9. Gingold, R. A., and Monaghan, J. J., "Smoothed particle hydrodynamics: theory and application to non-spherical stars," Monthly notices of the royal astronomical society, Vol. 181, No. 3, 1977, pp.375-389. https://doi.org/10.1093/mnras/181.3.375
  10. Lucy, L. B., "A numerical approach to the testing of the fission hypothesis," The astronomical journal, Vol. 82, 1977, pp.1013-1024. https://doi.org/10.1086/112164
  11. Kang, P. S., Im, C. K., Youn, S. K., Lim, J. H., and Hwang, D. S., "A study on the damage of satellite caused by hypervelocity impact with orbital debris," Journal of The Korean Society for Aeronautical and space Sciences, Vol. 40, No. 7, 2012, pp.555-563 https://doi.org/10.5139/JKSAS.2012.40.7.555
  12. Kim, C. H., Lee, Y. G., and Jeong, K. L., "A study on the numerical simulation method of two-dimensional incompressible fluid flows using ISPH method," Journal of the Society of Naval Architects of Korea, Vol. 48, No. 6, 2011, pp.560-568. https://doi.org/10.3744/SNAK.2011.48.6.560
  13. Dalrymple, R. A., and Rogers, B. D., "Numerical modeling of water waves with the SPH method," Coastal engineering, Vol. 53, No. 2-3, 2006, pp.141-147. https://doi.org/10.1016/j.coastaleng.2005.10.004
  14. Crespo, A. J., Gomez-Gesteira, M., and Dalrymple, R. A., "Modeling dam break behavior over a wet bed by a SPH technique," Journal of waterway, port, coastal, and ocean engineering, Vol. 134, No. 6, 2008, pp.313-320. https://doi.org/10.1061/(ASCE)0733-950X(2008)134:6(313)
  15. Georgiadis, S., Gunnion, A. J., Thomson, R. S., and Cartwright, B. K., "Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge," Composite Structures, Vol. 86, No. 1-3, 2008, pp.258-268. https://doi.org/10.1016/j.compstruct.2008.03.025
  16. Monaghan, J. J., "Smoothed particle hydrodynamics," Annual review of astronomy and astrophysics, Vol. 30, No. 1, 1992, pp.543-574. https://doi.org/10.1146/annurev.aa.30.090192.002551
  17. Cooper, P. W., "Acceleration, formation, and flight of fragments," Explosives Engineering, Wiley-VCH, 1996, pp.385-394.
  18. Meguid, S. A., Mao, R. H., and Ng, T. Y., "FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade," International Journal of Impact Engineering, Vol. 35, No. 6, 2008, pp.487-498. https://doi.org/10.1016/j.ijimpeng.2007.04.008
  19. Lavoie, M. A., Gakwaya, A., Ensan, M. N., and Zimcik, D. G., "Validation of available approaches for numerical bird strike modeling tools," International Review of Mechanical Engineering, Vol. 1, No. 4, 2007, pp.380-389.