• Title/Summary/Keyword: SONAR

Search Result 879, Processing Time 0.024 seconds

Measure of Effectiveness Analysis of Active SONAR for Detection (능동소나 탐지효과도 분석)

  • Park, Ji-Sung;Kim, Jea-Soo;Cho, Jung-Hong;Kim, Hyoung-Rok;Shin, Kee-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.118-129
    • /
    • 2013
  • Since the obstacles and mines are of the risk factors for operating ships and submarines, the active sonar system is inevitably used to avoid the hazards in ocean environment. In this paper, modeling and simulation algorithm is used for active sonar systemto quantify the measure of mission achievability, which is known as Measure of Effectiveness(MOE), specifically for detection in this study. MOE for detection is directly formulated as a Cumulative Detection Probability(CDP) calculated from Probability of Detection(PD) in range and azimuth. The detection probability is calculated from Transmission Loss(TL) and the sonar parameters such asDirectivity Index (DI) calculated from the shape of transmitted and received array, steered beam patterns, and Reverberation Level (RL). The developed code is applied to demonstrating its applicability.

Digital Image Processing of Side Scan Sonar for Underwater Man-made Structure (수중 인공구조물에 대한 사이드스캔소나 탐사자료의 영상처리)

  • Shin, Sung-Ryul;Lim, Min-Hyuk;Kim, Kwang-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.344-354
    • /
    • 2009
  • Side scan sonar using acoustic wave plays a very important role in the underwater, sea floor, and shallow marine geologic survey. In this study, we have acquired side scan sonar data for the underwater man-made structures, artificial reefs and fishing grounds, installed and distributed in the survey area. We applied digital image processing techniques to side scan sonar data in order to improve and enhance an image quality. We carried out digital image processing with various kinds of filtering in spatial domain and frequency domain. We tested filtering parameters such as kernel size, differential operator, and statistical value. We could easily estimate the conditions, distribution and environment of artificial structures through the interpretation of side scan sonar.

Measure of Effectiveness Analysis of Passive SONAR System for Detection (수동소나시스템에서 탐지효과도 분석)

  • Cho, Jung-Hong;Kim, Jea-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.272-287
    • /
    • 2012
  • The optimal use of sonar systems for detection is a practical problem in a given ocean environment. In order to quantify the mission achievability in general, measure of effectiveness(MOE) is defined for specific missions. In this paper, using the specific MOE for detection, which is represented as cumulative detection probability(CDP), an integrated software package named as Optimal Acoustic Search Path Planning(OASPP) is developed. For a given ocean environment and sonar systems, the discrete observations for detection probability(PD) are used to calculate CDP incorporating sonar and environmental parameters. Also, counter-detection probability is considered for vulnerability analysis for a given scenario. Through modeling and simulation for a simple case for which an intuitive solution is known, the developed code is verified.

CNN-based Opti-Acoustic Transformation for Underwater Feature Matching (수중에서의 특징점 매칭을 위한 CNN기반 Opti-Acoustic변환)

  • Jang, Hyesu;Lee, Yeongjun;Kim, Giseop;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In this paper, we introduce the methodology that utilizes deep learning-based front-end to enhance underwater feature matching. Both optical camera and sonar are widely applicable sensors in underwater research, however, each sensor has its own weaknesses, such as light condition and turbidity for the optic camera, and noise for sonar. To overcome the problems, we proposed the opti-acoustic transformation method. Since feature detection in sonar image is challenging, we converted the sonar image to an optic style image. Maintaining the main contents in the sonar image, CNN-based style transfer method changed the style of the image that facilitates feature detection. Finally, we verified our result using cosine similarity comparison and feature matching against the original optic image.

Development of a High Power SONAR System Measuring Velocity by Using Two Gated Sinusoidal Signals (두 개의 정현 신호를 이용한 속도 측정용 고전력 쏘나 시스템 개발)

  • 장순석;안흥구;이제형
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1036-1041
    • /
    • 1999
  • This paper aims for the development of the high power sonar system for measuring the velocity of a moving object. The high power sonar system transmits two gated 190 kHz sinusoidal signals with 1.6 [ms] time interval to the moving object. Then the sonar system detects and calculates the changed time delay of the reflected ultrasonic signals in order to derive the velocity of the moving object. The transmission part uses a high power amplifier so that 250 W gated sinusoidal signals can be transmitted to the transmitter. 1M RAM is utilized for transmitting and storing of the ultrasonic signals. The time delay is calculted by the cross-correlation technique between the transmitted signals and the received signals. The measured value from the high power sonar system is compared with directly measured values by photo diodes. The result confirms the adjacency to 0.3% error.

  • PDF

Optimal Sensor Placement in Multistatic Sonar (다중 상태 소나의 최적 수신망 배치)

  • Lee, Kwang-Hee;Han, Dong-Seog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.630-634
    • /
    • 2012
  • It is very important to place receiver in multistatic sonar. Inefficient placement of the receiver reduce detection probability and to increase the probability of detection should be used more receivers. Therefore, detection of targets in searching area, detection performance of limited receiver depends on how to place. Through the optimized receiver placement, detection area between each sonar as much as possible avoid duplication, as optimization, the minimum receiver can be maintained detection performance. In this paper we prove mathematical verification of maximum signal excess value based on sonar placement and we calculate a signal excess value by using computer simulations and suggest optimal sonar placement.

Fast Wideband Active Detection and Doppler Estimation Using the Extended Replica of an HFM Pulse in Active SONAR Systems (능동 소나 시스템에서 HFM 펄스의 확장 레플리카 상관기를 이용한 고속 광대역 능동탐지 및 도플러 추정 기법)

  • Shin, Jong-Woo;Kim, Wan-Jin;Do, Dae-Won;Lee, Dong-Hun;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.11-19
    • /
    • 2014
  • In recent SONAR (sound navigation and ranging) systems, wideband active SONAR systems has received more attention than narrowband SONAR systems due to the remarkable detection performance in terms of range resolution. However, the wideband SONAR systems usually requires a huge amount of computational burden in order to achieve their own superiority. To cope with this drawback of the wideband SONAR systems, this paper proposes a fast target detection and velocity estimation method using an extended replica in wideband hyperbolic frequency modulation active SONAR system. Computer simulation shows that the proposed method can be implemented by a highly reduced computational complexity with a little performance degradation in target detection and velocity estimation compared to the conventional filter bank method.

Optimal depth for dipping sonar system using optimization algorithm (최적화 알고리즘을 적용한 디핑소나 최적심도 산출)

  • An, Sangkyum
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2020
  • To overcome the disadvantage of hull mounted sonar, many countries operate dipping sonar system for helicopter. Although limited in performance, this system has the advantage of ensuring the survivability of the surface ship and improving the detection performance by adjusting the depth according to the ocean environment. In this paper, a method to calculate the optimal depth of the dipping sonar for helicopters is proposed by applying an optimization algorithm. In addition, in order to evaluate the performance of the sonar, the Sonar Performance Function (SPF) is defined to consider the ocean environment, the depth of the target and the depth of the dipping sonar. In order to reduce the calculation time, the optimal depth is calculated by applying Simulated Annealing (SA), one of the optimization algorithms. For the verification of accuracy, the optimal depth calculated by applying the optimization technique is compared with the calculation of the SPF. This paper also provides the results of calculation of optimal depth for ocean environment in the East sea.

An Implementation of Real-Time SONAR Signal Display System using the FPGA Embedded Processor System (FPGA 임베디드 프로세서 시스템을 사용한 실시간 SONAR 선호 디스플레이 시스템의 구현)

  • Kim, Dong-Jin;Kim, Dae-Woong;Park, Young-Seak
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.315-321
    • /
    • 2011
  • The CRT monitor display system for SONAR signal that are commonly used in ships or naval vessels uses vector scanning method. Therefore the processing circuits of the system is complex. Also because production had been shut down, the supply of parts is difficult as well as high-cost. FPGA -based embedded processor system is flexible to adapting to various applications because it makes simple processing circuits and its core is easily reconfigurable, and provides high speed performance in low-cost. In this paper, we describe an implementation of SONAR signal LCD display system using the FPGA embedded processor system to overcome some weakness of existing CRT system. By changing X-Y Deflection and CRT control blocks of current system into FPGA embedded processor system, our system provides the simplicity, flexibility and low-cost of system configuration, and also real-time acquisition and display of SONAR signal.

Development of Grid Observation Model for Particle Filter-based Mobile Robot Localization using Sonar Grid Map (초음파 격자 지도를 이용한 파티클 필터 기반의 이동로봇 위치 추정을 위한 격자 관측 모델의 개발)

  • Park, Byungjae;Lee, Se-Jin;Chung, Wan Kyun;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.308-316
    • /
    • 2013
  • This paper proposes an observation model for a particle filter-based localization using a sonar grid map. The proposed model estimates a predicted observation by considering the properties of a sonar sensor which has a large angular uncertainty. The proposed model searches a grid which has the highest probability to reflect a sonar beam using the following procedures; (1) the reliable area of a single sonar data is determined using the footprint association model; (2) the detection probability of each grid cell in a sonar beam coverage in estimated. The proposed model was applied to the particle filter based localization, and was verified by experiments in indoor environments.