DOI QR코드

DOI QR Code

Optimal depth for dipping sonar system using optimization algorithm

최적화 알고리즘을 적용한 디핑소나 최적심도 산출

  • An, Sangkyum (Incheon Naval Sector Defence Command, Republic of Korea Navy)
  • 안상겸 (해군 인천해역방어사령부)
  • Received : 2020.09.29
  • Accepted : 2020.11.23
  • Published : 2020.11.30

Abstract

To overcome the disadvantage of hull mounted sonar, many countries operate dipping sonar system for helicopter. Although limited in performance, this system has the advantage of ensuring the survivability of the surface ship and improving the detection performance by adjusting the depth according to the ocean environment. In this paper, a method to calculate the optimal depth of the dipping sonar for helicopters is proposed by applying an optimization algorithm. In addition, in order to evaluate the performance of the sonar, the Sonar Performance Function (SPF) is defined to consider the ocean environment, the depth of the target and the depth of the dipping sonar. In order to reduce the calculation time, the optimal depth is calculated by applying Simulated Annealing (SA), one of the optimization algorithms. For the verification of accuracy, the optimal depth calculated by applying the optimization technique is compared with the calculation of the SPF. This paper also provides the results of calculation of optimal depth for ocean environment in the East sea.

수상함용 선체부착형소나의 한계를 극복하기 위해서 해상작전헬기용 디핑소나를 많은 나라에서 운용중이다. 디핑소나는 탐지거리가 짧지만 수상함의 생존성을 보장하고, 해양환경에 따라 심도를 조절하여 탐지성능을 향상시킬 수 있는 장점이 있다. 본 논문에서는 최적화 알고리즘을 적용하여 해상작전헬기용 디핑소나의 최적심도를 산출하는 방법을 제안하였다. 또한, 소나의 성능을 평가하기 위해 해양환경, 표적의 심도, 디핑소나의 심도를 고려하도록 소나성 능함수를 정의하였다. 계산시간 단축을 위해 최적화 알고리즘중 하나인 Simulated Annealing(SA)를 적용하여 최적 심도를 산출하였다. 알고리즘의 정확도 검증을 위하여 최적화 기법을 적용하여 산출한 최적심도를 목적함수 계산 결과와 비교하였다. 또한, 우리나라 동해해역에서 해양환경에 따른 최적심도를 산출하였다.

Keywords

References

  1. C. M. Ferla and M. B. Poter, "Receiver depth selection for passive sonar systems," IEEE J. Ocean Eng. 16, 267-278 (1991). https://doi.org/10.1109/48.90883
  2. D. A. Gershfeld and F. Ingenito, "Optimum depth of propagation in shallow water (No. NRL-8741)," Naval research lab Rep., 1983.
  3. M. C. Domingo, "Optimal placement of wireless nodes in underwater wireless sensor networks with shadow zones," IEEE. 2nd IFIP Wireless Days (WD), 1-6 (2009).
  4. R. J. Urick, Principles of Underwater Sound (McGraw-Hill, New York, 1967), pp. 16-28.
  5. D. C. Kim, S. J. Kim, Y. K. Seo, J. H, Jeong, Y. E. Kim, and K. Y, Kim, "Physical properties of Southeastern Yellow Sea Mud (SEYSM): Comparison with the East Sea and the South Sea mudbelts of Korea" (in Korean), J. Ocean. Soc. Kor. 5, 335-345 (2000).
  6. M. B. Poter, The BELLHOP Manual and User's Guide: Preliminary Draft, http://oalib.hlsresearch.com/Rays/HLS-2010-1.pdf, (Last viewed November 24, 2020).
  7. E. Arts and J. Korst, Simulated Annealing and Boltzmann Machines (Wiley, New Jersey, 1989), pp. 170-171.
  8. M. D. Collins, W. A. Kuperman, and H. Schmidt, "Nonlinear inversion for ocean-bottom properties," J. Acoust. Soc. Am. 92, 2770-2783(1992). https://doi.org/10.1121/1.404394
  9. C. E. Lindsay and N. R. Chapman, "Matched field inversion for geoacoustic model parameters using adaptive simulated annealing," IEEE J. Ocean Eng. 18, 224-231(1993). https://doi.org/10.1109/JOE.1993.236360
  10. C. S. Park, H. S, Seol, G. D. Kim, and Y. H. Park, "A study on hydrophone array design optimization for cavitation tunnel noise measurements" (in Korean), J. Acoust. Soc. Kor. 32, 237-246 (2013). https://doi.org/10.7776/ASK.2013.32.3.237
  11. NOAA, World Ocean Database 2013, https://www.nodc.noaa.gov/OC5/WOD13/, (Last viewed November 24, 2020).
  12. Global 30 Arc-Second Elevation, U. S. Geological Survey's Earth Resources Observation and Science (EROS) Center, https://www.usgs.gov/centers/eros/data-tools, (Last viewed November 24, 2020).