• 제목/요약/키워드: SNP genotyping

검색결과 168건 처리시간 0.03초

Evaluation of Chloroplast Genotypes of Korean Cucumber Cultivars (Cucumis sativus L.) Using sdCAPS Markers Related to Chilling Tolerance

  • Ali, Asjad;Yang, Eun Mi;Lee, Sun Young;Chung, Sang-Min
    • 원예과학기술지
    • /
    • 제31권2호
    • /
    • pp.219-223
    • /
    • 2013
  • DNA markers can determine the genotype of many species. Single nucleotide polymorphism (SNP) detection is difficult without sequencing but it becomes easier with sdCAPS method. Here an experiment was performed for developing molecular markers using two SNPs, CSatpB-SNP and CSycf1-SNP, of chloroplast in cucumber plants. Properly designed primers with nucleotide sequences for restriction enzymes proved success of PCR and efficacy of digestion by the restriction enzymes. Then these markers were used to study the genotyping of cucumber breeding lines and cultivars obtained from various sources in respect of their chilling stress response. We confirmed that a U.S. cucumber line, 'NC76' known to possess a nuclear factor for the chilling tolerance showed the chloroplast genotypes related to chilling tolerance. However all Korean cucumber cultivars tested in this study showed the chloroplast genotypes related to chilling susceptibility. In conclusion, to develop chilling tolerant cucumber, both maternal and a nuclear factors related to chilling tolerance should be transferred from 'NC76' when 'NC76' is used as a female source and other elite lines as recurrent parents.

폐암 억제유전자 RRM1의 단일염기다형성 검사를 위한 PCR-RFLP법과 Real-Time PCR법의 유용성 비교 (Comparison of PCR-RFLP and Real-Time PCR for Allelotyping of Single Nucleotide Polymorphisms of RRM1, a Lung Cancer Suppressor Gene)

  • 정주연;김미란;손준광;정종필;오인재;김규식;김영철
    • Tuberculosis and Respiratory Diseases
    • /
    • 제62권5호
    • /
    • pp.406-416
    • /
    • 2007
  • 연구배경: 단일염기다형성(Single nucleotide polymorphism, SNP)은 인간의 유전자 서열 1000염기에 1개 빈도로 발견되어 인간은 대략 300만개의 유전자 다형성을 가지고 있다. 이 유전자 다형성의 조합결과로 인간의 개체 간 특성들이 결정되는 것으로 이해되고 있다. 이러한 다형성들의 조합양상에 따라 특이 질환에 대한 유전자 감수성 또한 달라지게 되므로 최근에는 많은 질환들과 유전자 다형성들과의 상관관계를 보는 연구들도 활발하게 진행되고 있다. 이러한 SNP분석은 큰 집단을 대상으로 진행되어 지므로 적은 비용으로 정확하게 그리고 대용량으로 분석할 수 있는 방법이 필요하다. 방 법: 대상 환자 89명의 genomic DNA를 가지고서 promotor상에 위치한 -37과 -524 염기부위에서 유전자 다형성을 보이는 것으로 보고되어져 있는 RRM1(ribonucleotide reductase M1) 유전자를 대상으로 PCR-RFLP(polymerase chain reaction-restriction fragment length polymorphism)와 real-time PCR(RTPCR, TaqMan probe assay)을 동시에 시행한 후 각각의 결과를 비교 분석하였다. 결 과: 대상 DNA 89예 중 -37에서는 2예(2.17%), -524에서는 15예(16.26%)가 서로 다른 양상을 보였다. 결과 차이를 보인 샘플 17예를 대상으로 직접 염기서열 분석을 시행하여 본 결과, 17예 모두 RT-PCR에서 확인되었던 결과와 일치함을 확인할 수 있었다. 추가 샘플 138예를 대상으로 RT-PCR을 2회 연속 실행하여 genotyping을 해 본 결과 98%이상의 높은 일치율을 보였으며, 그중 10예를 무작위로 골라 직접 염기서열 분석을 시행하여 본 결과, 역시 100%일치, 높은 정확도를 보였고 이는 in-tube assay 방식으로 샘플의 오염을 최소화 할 수 있었으며 72 well based system(Corbett Research)을 이용함으로 1회 유전자 증폭반응을 통해 많은 검체를 한 번에 확인할 수 있어 매우 빠른 검사방법 이었다. 결 론: 큰 집단을 대상으로 다량의 SNP를 분석하기 위한 실험 방법으로는 RT-PCR이 신속하면서도 정확한 결과를 얻을 수 있는 방법으로 사료된다.

단일염기다형성 마커를 이용한 백우 품종 식별 방법 (Identification of White Hanwoo Breed Using Single Nucleotide Polymorphism Markers)

  • 김승창;김관우;노희종;김동교;김성우;김찬란;이상훈;고응규;조창연
    • 한국산학기술학회논문지
    • /
    • 제21권1호
    • /
    • pp.240-246
    • /
    • 2020
  • 본 연구는 백우 품종 육성을 위해 분자생물학적 방법을 이용하여 유전적 특성을 파악하고 백우 품종을 식별하기 위한 백우 품종 특이적인 Single Nucleotide Polymorphism (SNP) 마커를 개발하기 위해 수행되었다. 한우 48두와 백우 22두의 혈액에서 추출된 DNA를 이용하여 Illumina Bovine HD 777K SNP chip으로 SNP genotyping을 실시하였다. 각 SNP의 Minor Allele Frequency (MAF) difference (한우와 백우의 차이 절대값)을 계산하고, Fisher's Exact test (Genotype)을 통해 MAF difference의 통계적 유의성(P-value)을 계산하였다. 품종 별 차이를 나타낼 수 있는 마커를 선발기준으로 MAF difference가 100%의 차이를 나타내는 SNP를 식별하였다. 이러한 유전적 차이를 보이는 9개의 단일염기다형성 마커(rs42125585, rs42125591, rs42125833, rs109461720, rs134735704, rs109447299, rs42164846, rs42160000 및 rs137353829)가 선발되었다. 선발된 마커들은 한우와 백우 특이적인 대립유전자를 가지고 서로 다른 대립유전자를 나타내고 있다. 이들 9개의 SNP 마커들을 이용하여 한우와 백우의 품종을 식별할 수 있음을 확인하였고, 이러한 결과들을 바탕으로 백우 품종 식별 마커 특허를 등록하였다. 백우는 원종인 한우에서 분리되어 한국재래종의 특성을 잘 나타내 주는 계통으로, 이러한 백우가 가지고 있는 유전적 특성 연구는 백우를 식별하고 품종으로서 육종하는데 사용되어 종축으로서의 가치 증진을 위한 기반 연구가 될 것으로 생각된다.

Genetic diversity and divergence among Korean cattle breeds assessed using a BovineHD single-nucleotide polymorphism chip

  • Kim, Seungchang;Cheong, Hyun Sub;Shin, Hyoung Doo;Lee, Sung-Soo;Roh, Hee-Jong;Jeon, Da-Yeon;Cho, Chang-Yeon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권11호
    • /
    • pp.1691-1699
    • /
    • 2018
  • Objective: In Korea, there are three main cattle breeds, which are distinguished by coat color: Brown Hanwoo (BH), Brindle Hanwoo (BRH), and Jeju Black (JB). In this study, we sought to compare the genetic diversity and divergence among there Korean cattle breeds using a BovineHD chip genotyping array. Methods: Sample data were collected from 168 cattle in three populations of BH (48 cattle), BRH (96 cattle), and JB (24 cattle). The single-nucleotide polymorphism (SNP) genotyping was performed using the Illumina BovineHD SNP 777K Bead chip. Results: Heterozygosity, used as a measure of within-breed genetic diversity, was higher in BH (0.293) and BRH (0.296) than in JB (0.266). Linkage disequilibrium decay was more rapid in BH and BRH than in JB, reaching an average $r^2$ value of 0.2 before 26 kb in BH and BRH, whereas the corresponding value was reached before 32 kb in JB. Intra-population, interpopulation, and Fst analyses were used to identify candidate signatures of positive selection in the genome of a domestic Korean cattle population and 48, 11, and 11 loci were detected in the genomic region of the BRH breed, respectively. A Neighbor-Joining phylogenetic tree showed two main groups: a group comprising BH and BRH on one side and a group containing JB on the other. The runs of homozygosity analysis between Korean breeds indicated that the BRH and JB breeds have high inbreeding within breeds compared with BH. An analysis of differentiation based on a high-density SNP chip showed differences between Korean cattle breeds and the closeness of breeds corresponding to the geographic regions where they are evolving. Conclusion: Our results indicate that although the Korean cattle breeds have common features, they also show reliable breed diversity.

Single Nucleotide Polymorphism (SNP) Discovery and Kompetitive Allele-Specific PCR (KASP) Marker Development with Korean Japonica Rice Varieties

  • Cheon, Kyeong-Seong;Baek, Jeongho;Cho, Young-il;Jeong, Young-Min;Lee, Youn-Young;Oh, Jun;Won, Yong Jae;Kang, Do-Yu;Oh, Hyoja;Kim, Song Lim;Choi, Inchan;Yoon, In Sun;Kim, Kyung-Hwan;Han, Jung-Heon;Ji, Hyeonso
    • Plant Breeding and Biotechnology
    • /
    • 제6권4호
    • /
    • pp.391-403
    • /
    • 2018
  • Genome resequencing by next-generation sequencing technology can reveal numerous single nucleotide polymorphisms (SNPs) within a closely-related cultivar group, which would enable the development of sufficient SNP markers for mapping and the identification of useful genes present in the cultivar group. We analyzed genome sequence data from 13 Korean japonica rice varieties and discovered 740,566 SNPs. The SNPs were distributed at 100-kbp intervals throughout the rice genome, although the SNP density was uneven among the chromosomes. Of the 740,566 SNPs, 1,014 SNP sites were selected on the basis of polymorphism information content (PIC) value higher than 0.4 per 200-kbp interval, and 506 of these SNPs were converted to Kompetitive Allele-Specific PCR (KASP) markers. The 506 KASP markers were tested for genotyping with the 13 sequenced Korean japonica rice varieties, and polymorphisms were detected in 400 KASP markers (79.1%) which would be suitable for genetic analysis and molecular breeding. Additionally, a genetic map comprising 205 KASP markers was successfully constructed with 188 $F_2$ progenies derived from a cross between the varieties, Junam and Nampyeong. In a phylogenetic analysis with 81 KASP markers, 13 Korean japonica varieties showed close genetic relationships and were divided into three groups. More KASP markers are being developed and these markers will be utilized in gene mapping, quantitative trait locus (QTL) analysis, marker-assisted selection and other strategies relevant to crop improvement.

정신의학에서의 약물유전학 현황 (Current Pharmacogenetics in Psychiatry)

  • 김일빈;이유상
    • 생물정신의학
    • /
    • 제28권1호
    • /
    • pp.1-6
    • /
    • 2021
  • Pharmacogenetics is opening a new era of precision medicine in psychiatry. Drug-metabolizing enzymes are characterized by genetic polymorphisms, which render a large portion of variability in individual drug metabolism. Dose adjustment based on pharmacogenetics knowledge is a first step to translate pharmacogenetics into clinical practice. However, diverse factors including cost-effectiveness should be addressed to provide clinical recommendation. To address current challenges in pharmacogenetics testing in psychiatry, this review provides an update regarding genotyping (SNP analysis, array, and next-generation sequencing), genotype-phenotype correlations, and cost-effectiveness. The current updates on pharmacogenetics in psychiatry will provide guidance for both clinician and researchers to have a consensus in harmonizing efforts to advance the pharmacogenetics field in a part of precision medicine in psychiatry.

Construction of genetic linkage maps of Allium cepa using genotyping-by-sequencing

  • Lee, Daewoong;Chung, Yong Suk;Kim, Changsoo;Jun, Tae-Hwan
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.117-117
    • /
    • 2017
  • The onion (Allium cepa L.) is the most widely cultivated species of the genus Allium, especially it has been valued because of the pungent flavor and aroma. Allium species including onion has very large genome sizes ranging from approximately 10 to 20 Gbp, which have complicated genomic studies and precluded genome sequencing until recently. A population of 186 F2 individuals derived from a cross of 'Umjinara' ${\times}$ 'Sinsunhwang' and the two parental lines were used for this study. For the development of framework map, various types of markers including SSRs, RAPD, SNPs, and CAPS makers have been used for polymorphism test. Especially, a lot of SNP and CAPS loci were developed from the onion transcriptome sequence by RNASEQ of two parental lines. The GBS libraries have been constructed based on a modified protocol from Poland Lab using a two-enzyme system. We have been developing markers showing polymorphism between two parental lines, and genotyping for all F2 individuals were finished for a number of polymorphic markers. For the construction of GBS libraries, a set of 192 barcoded adapters were generated from complementary oligonucleotides with XhoI overhang sequence and unique barcodes of length 4-8 bp and they have been tested using two parental linesto determine the optimum conditions for GBS analysis.

  • PDF

Comparison of Normalization Methods for Defining Copy Number Variation Using Whole-genome SNP Genotyping Data

  • Kim, Ji-Hong;Yim, Seon-Hee;Jeong, Yong-Bok;Jung, Seong-Hyun;Xu, Hai-Dong;Shin, Seung-Hun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제6권4호
    • /
    • pp.231-234
    • /
    • 2008
  • Precise and reliable identification of CNV is still important to fully understand the effect of CNV on genetic diversity and background of complex diseases. SNP marker has been used frequently to detect CNVs, but the analysis of SNP chip data for identifying CNV has not been well established. We compared various normalization methods for CNV analysis and suggest optimal normalization procedure for reliable CNV call. Four normal Koreans and NA10851 HapMap male samples were genotyped using Affymetrix Genome-Wide Human SNP array 5.0. We evaluated the effect of median and quantile normalization to find the optimal normalization for CNV detection based on SNP array data. We also explored the effect of Robust Multichip Average (RMA) background correction for each normalization process. In total, the following 4 combinations of normalization were tried: 1) Median normalization without RMA background correction, 2) Quantile normalization without RMA background correction, 3) Median normalization with RMA background correction, and 4) Quantile normalization with RMA background correction. CNV was called using SW-ARRAY algorithm. We applied 4 different combinations of normalization and compared the effect using intensity ratio profile, box plot, and MA plot. When we applied median and quantile normalizations without RMA background correction, both methods showed similar normalization effect and the final CNV calls were also similar in terms of number and size. In both median and quantile normalizations, RMA backgroundcorrection resulted in widening the range of intensity ratio distribution, which may suggest that RMA background correction may help to detect more CNVs compared to no correction.

한우에서 TG와 EDG1 유전자의 단일염기다형 확인 및 도체형질과의 연관성 분석 (Identification of SNPs in TG and EDG1 genes and their relationships with carcass traits in Korean cattle (Hanwoo))

  • 카야디;디아 마하라니;유승희;이승환;이준헌
    • 농업과학연구
    • /
    • 제39권3호
    • /
    • pp.349-355
    • /
    • 2012
  • Thyroglobulin (TG) gene was known to be regulated fat cell growth and differentiation and the endothelial differentiation sphingolipid G-protein-coupled receptor 1 (EDG1) gene involves blood vessel formation and known to be affecting carcass traits in beef cattle. The aim of this study was to identify the single nucleotide polymorphisms (SNPs) in both TG and EDG1 genes and to analyze the association with carcass traits in Korean cattle (Hanwoo). The T354C SNP in TG gene located at the 3' flanking region and c.-312A>G SNP located at 3'-UTR of EDG1 gene were used for genotyping the animals using PCR-RFLP method. Three genotypes were identified in T354C SNP in TG gene and only two AA and AG genotypes were observed for the c.-312A>G SNP in EDG1 gene. The results indicated that T354C SNP in TG gene was not significantly associated with carcass traits. However, the c.-312A>G SNP in EDG1 gene had significant effects on backfat thickness (BF) and yield index (YI). These results may provide valuable information for further candidate gene studies affecting carcass traits in Korean cattle and may use as marker assisted selection for improving the quality of meat in Hanwoo.

Single Nucleotide Polymorphism Marker Discovery from Transcriptome Sequencing for Marker-assisted Backcrossing in Capsicum

  • Kang, Jin-Ho;Yang, Hee-Bum;Jeong, Hyeon-Seok;Choe, Phillip;Kwon, Jin-Kyung;Kang, Byoung-Cheorl
    • 원예과학기술지
    • /
    • 제32권4호
    • /
    • pp.535-543
    • /
    • 2014
  • Backcross breeding is the method most commonly used to introgress new traits into elite lines. Conventional backcross breeding requires at least 4-5 generations to recover the genomic background of the recurrent parent. Marker-assisted backcrossing (MABC) represents a new breeding approach that can substantially reduce breeding time and cost. For successful MABC, highly polymorphic markers with known positions in each chromosome are essential. Single nucleotide polymorphism (SNP) markers have many advantages over other marker systems for MABC due to their high abundance and amenability to genotyping automation. To facilitate MABC in hot pepper (Capsicum annuum), we utilized expressed sequence tags (ESTs) to develop SNP markers in this study. For SNP identification, we used Bukang $F_1$-hybrid pepper ESTs to prepare a reference sequence through de novo assembly. We performed large-scale transcriptome sequencing of eight accessions using the Illumina Genome Analyzer (IGA) IIx platform by Solexa, which generated small sequence fragments of about 90-100 bp. By aligning each contig to the reference sequence, 58,151 SNPs were identified. After filtering for polymorphism, segregation ratio, and lack of proximity to other SNPS or exon/intron boundaries, a total of 1,910 putative SNPs were chosen and positioned to a pepper linkage map. We further selected 412 SNPs evenly distributed on each chromosome and primers were designed for high throughput SNP assays and tested using a genetic diversity panel of 27 Capsicum accessions. The SNP markers clearly distinguished each accession. These results suggest that the SNP marker set developed in this study will be valuable for MABC, genetic mapping, and comparative genome analysis.