Comparison of PCR-RFLP and Real-Time PCR for Allelotyping of Single Nucleotide Polymorphisms of RRM1, a Lung Cancer Suppressor Gene

폐암 억제유전자 RRM1의 단일염기다형성 검사를 위한 PCR-RFLP법과 Real-Time PCR법의 유용성 비교

  • Jeong, Ju-Yeon (Medical Science Laboratory, Chonnam National University Medical School) ;
  • Kim, Mi-Ran (Medical Science Laboratory, Chonnam National University Medical School) ;
  • Son, Jun-Gwang (Department of Internal Medicine, Chonnam National University Medical School) ;
  • Jung, Jong-Pil (Department of Internal Medicine, Chonnam National University Medical School) ;
  • Oh, In-Jae (Department of Internal Medicine, Chonnam National University Medical School) ;
  • Kim, Kyu-Sik (Department of Internal Medicine, Chonnam National University Medical School) ;
  • Kim, Young-Chul (Department of Internal Medicine, Chonnam National University Medical School)
  • 정주연 (전남대학교 의과대학 의과학 연구소) ;
  • 김미란 (전남대학교 의과대학 의과학 연구소) ;
  • 손준광 (전남대학교 의과대학 내과학교실) ;
  • 정종필 (전남대학교 의과대학 내과학교실) ;
  • 오인재 (전남대학교 의과대학 내과학교실) ;
  • 김규식 (전남대학교 의과대학 내과학교실) ;
  • 김영철 (전남대학교 의과대학 내과학교실)
  • Received : 2007.02.21
  • Accepted : 2007.05.04
  • Published : 2007.05.30

Abstract

Background: Single nucleotide polymorphisms (SNPs), which consist of a substitution of a single nucleotide pair, are the most abundant form of genetic variations occurring with a frequency of approximately 1 per 1000 base pairs. SNPs by themselves do not cause disease but can predispose humans to disease, modify the extent or severity of the disease or influence the drug response and treatment efficacy. Single nucleotide polymorphisms (SNPs), particularly those within the regulatory regions of the genes often influence the expression levels and can modify the disease. Studies examining the associations between SNP and the disease outcome have provided valuable insight into the disease etiology and potential therapeutic intervention. Traditionally, the genotyping of SNPs has been carried out using polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP), which is a low throughput technique not amenable for use in large-scale SNP studies. Recently, TaqMan real-time PCR chemistry was adapted for use in allelic discrimination assays. This study validated the accuracy and utility of real-time PCR technology for SNPs genotyping Methods: The SNPs in promoter sequence (-37 and -524) of lung cancer suppressor gene, RRM1 (ribonucleotide reductase M1 subunit) with the genomic DNA samples of 89 subjects were genotyped using both real-time PCR and PCR-RFLP. Results: The discordance rates were 2.2% (2 mismatches) in -37 and 16.3% (15 mismatches) in -524. Auto-direct sequencing of all the mismatched samples(17 cases) were in accord with the genotypes read by real-time PCR. In addition, 138 genomic DNAs were genotyped using real-time PCR in a duplicate manner (two separated assays). Ninety-eight percent of the samples showed concordance between the two assays. Conclusion: Real-time PCR allelic discrimination assays are amenable to high-throughput genotyping and overcome many of the problematic features associated with PCR-RFLP.

연구배경: 단일염기다형성(Single nucleotide polymorphism, SNP)은 인간의 유전자 서열 1000염기에 1개 빈도로 발견되어 인간은 대략 300만개의 유전자 다형성을 가지고 있다. 이 유전자 다형성의 조합결과로 인간의 개체 간 특성들이 결정되는 것으로 이해되고 있다. 이러한 다형성들의 조합양상에 따라 특이 질환에 대한 유전자 감수성 또한 달라지게 되므로 최근에는 많은 질환들과 유전자 다형성들과의 상관관계를 보는 연구들도 활발하게 진행되고 있다. 이러한 SNP분석은 큰 집단을 대상으로 진행되어 지므로 적은 비용으로 정확하게 그리고 대용량으로 분석할 수 있는 방법이 필요하다. 방 법: 대상 환자 89명의 genomic DNA를 가지고서 promotor상에 위치한 -37과 -524 염기부위에서 유전자 다형성을 보이는 것으로 보고되어져 있는 RRM1(ribonucleotide reductase M1) 유전자를 대상으로 PCR-RFLP(polymerase chain reaction-restriction fragment length polymorphism)와 real-time PCR(RTPCR, TaqMan probe assay)을 동시에 시행한 후 각각의 결과를 비교 분석하였다. 결 과: 대상 DNA 89예 중 -37에서는 2예(2.17%), -524에서는 15예(16.26%)가 서로 다른 양상을 보였다. 결과 차이를 보인 샘플 17예를 대상으로 직접 염기서열 분석을 시행하여 본 결과, 17예 모두 RT-PCR에서 확인되었던 결과와 일치함을 확인할 수 있었다. 추가 샘플 138예를 대상으로 RT-PCR을 2회 연속 실행하여 genotyping을 해 본 결과 98%이상의 높은 일치율을 보였으며, 그중 10예를 무작위로 골라 직접 염기서열 분석을 시행하여 본 결과, 역시 100%일치, 높은 정확도를 보였고 이는 in-tube assay 방식으로 샘플의 오염을 최소화 할 수 있었으며 72 well based system(Corbett Research)을 이용함으로 1회 유전자 증폭반응을 통해 많은 검체를 한 번에 확인할 수 있어 매우 빠른 검사방법 이었다. 결 론: 큰 집단을 대상으로 다량의 SNP를 분석하기 위한 실험 방법으로는 RT-PCR이 신속하면서도 정확한 결과를 얻을 수 있는 방법으로 사료된다.

Keywords

References

  1. Shastry BS. SNP alleles in human disease and evolution. J Hum Genet 2002;47:561-6 https://doi.org/10.1007/s100380200086
  2. Syvanen AC. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2001;12:930-42
  3. Brookes AJ. The essence of SNPs. Gene 1999; 234:177-86 https://doi.org/10.1016/S0378-1119(99)00219-X
  4. Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 1998;8:1229-31 https://doi.org/10.1101/gr.8.12.1229
  5. Knudson AG. Hereditary predisposition to cancer. Ann N Y Acad Sci 1997;833:58-67 https://doi.org/10.1111/j.1749-6632.1997.tb48593.x
  6. Ohnishi Y, Tanaka T, Yamada R, Suematsu K, Minami M, Fujii K, et al. Identification of 187 single nucleotide polymorphisms(SNPs)among 41 candidate genes for ischemic heart disease in the Japanese population. Hum Genet 2000;106:288-92 https://doi.org/10.1007/s004390051039
  7. Kamide K, Kokubo Y, Yang J, Matayoshi T, Inamoto N, Takiuchi S, et al. Association of genetic polymorphisms of ACADSB and COMT with human hypertension. J Hypertens 2006;25:103-10
  8. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996;273:1516-7 https://doi.org/10.1126/science.273.5281.1516
  9. Sousa MC, Morais JB, Machado JE, Poiares-DA-Silva J. Genotyping of Giardia lamblia Human Isolates from Portugal by PCR-RFLP and Sequencing. J Eukaryot Microbiol 2006;53:174-6 https://doi.org/10.1111/j.1550-7408.2006.00221.x
  10. Hatzaki A, Razi E, Anagnostopoulou K, Iliadis K, Kodaxis A, Papaioannou D, et al. A modified mutagenic PCR-RFLP method for K-ras codon 12 and 13 mutations detection in NSCLC patients. Mol Cell Probes 2001;15:243-7 https://doi.org/10.1006/mcpr.2001.0367
  11. Bravo-Villalta HV, Yamamoto K, Nakamura K, Baya A, Horiuchi R. A novel intronic mutation that may affect genotyping result of CYP2C8 by PCR-RFLP is strongly associated with CYP2C8*3 in a South American population. J Hum Genet 2006;52:195-9 https://doi.org/10.1007/s10038-006-0097-y
  12. Ruiz-Ponte C, Carracedo A, Barros F. Duplication and deletion analysis by fluorescent real-time PCR-based genotyping. Clin Chim Acta 2006;363:138-46 https://doi.org/10.1016/j.cccn.2005.05.044
  13. Gibson NJ. The use of real-time PCR methods in DNA sequence variation analysis. Clin Chim Acta 2006;363:32-47 https://doi.org/10.1016/j.cccn.2005.06.022
  14. Joneson VJ, Yucesoy B, Luster MI. Genotyping of single nucleotide polymorphisms in cytokine genes using real-time PCR allelic discrimination technology. Cytokine 2004;27:135-41 https://doi.org/10.1016/j.cyto.2004.05.002
  15. Bepler G, Zheng Z, Gautam A, Sharma S, Cantor A, Sharma A, et al. Ribonucleotide reductase M1 gene promoter activity, polymorphisms, population frequencies, and clinical relevance. Lung cancer 2005;47: 183-92 https://doi.org/10.1016/j.lungcan.2004.07.043
  16. Ueda T, Ugawa S, Ishida Y, Shibata Y, Murakami S, Shimada S. Identification of coding single nucleotide polymorphisms in human taste recepter genes involving bitter tasting. Biochem Biophys Res Commun 2001;285:147-51 https://doi.org/10.1006/bbrc.2001.5136
  17. Shi MM. Technologies for individual genotyping: detection of genetic polymorphisms in drug targets and disease genes. Am J Pharmacogenomics 2002; 2:197-205 https://doi.org/10.2165/00129785-200202030-00005
  18. Abraham J, Earl HM, Pharoah PD, Caldas C. Pharmacogenetics of cancer chemotherapy. Biochim Biophys Acta 2006;1766:168-83
  19. Shi MM, Bleavins MR, de la iglesia FA. Technologies for detecting genetic polymorphisms in pharmacogenomics. Mol Diagn 1999;4:343-51 https://doi.org/10.1016/S1084-8592(99)80011-3
  20. Lazarus R, Vercelli D, Palmer LJ, Klimecki WJ, Silverman EK, Richter B, et al. Single nucleotide polymorphisms in innate immunity genes: abundant variation and potential role in complex human disease. Immunol Rev 2002;190:9-25 https://doi.org/10.1034/j.1600-065X.2002.19002.x
  21. Palmer LJ, Cookson WO. Using single nucleotide polymorphisms as a means to understanding the pathophysiology of asthma. Respir Res 2001;2:102-12 https://doi.org/10.1186/rr45
  22. Iannone MA, Taylor JD, Chen J, Li MS, Rivers P, Slentz-Kesler KA, et al. Multiplexed single nucleotide polymorphism genatyping by oligonucleotide ligation and flow cytometry. Cytometry 2000;39:131-40 https://doi.org/10.1002/(SICI)1097-0320(20000201)39:2<131::AID-CYTO6>3.0.CO;2-U
  23. Blievernicht JK, Schaeffeler E, Klein K, Eichelbaum M, Schwab M, Zanqer UM. MALDI-TOF mass spectrometry for multiplex genotyping of CYP2B6 single nucleotide polymorphisms. Clin Chem 2007;53: 24-33
  24. Podder M, Welch WJ, Zamar RH, Tebbutt SJ. Dynamic variable selection in SNP genotype autocalling from APEX microarray data. BMC Bioinformatics 2006;7:521 https://doi.org/10.1186/1471-2105-7-521
  25. Jobs M, Howell WM, Stromqvist L, Mayr T, Brookes AJ. DASH-2: flexible, low-cost, and high throughput SNP genotyping by dynamic allele-specific hybridization on membrane arrays. Genome Res 2003;13: 916-24 https://doi.org/10.1101/gr.801103
  26. Shen GO, Luo A, Wang OK. High-throughput single nucleotide polymorphisms genotyping: TaqMan assay and pyrosequencing assay. Methods Mol Med 2006;128:209-24