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Abstract
Precise and reliable identification of CNV is still im-
portant to fully understand the effect of CNV on genetic 
diversity and background of complex diseases. SNP 
marker has been used frequently to detect CNVs, but 
the analysis of SNP chip data for identifying CNV has 
not been well established. We compared various nor-
malization methods for CNV analysis and suggest opti-
mal normalization procedure for reliable CNV call. Four 
normal Koreans and NA10851 HapMap male samples 
were genotyped using Affymetrix Genome-Wide Human 
SNP array 5.0. We evaluated the effect of median and 
quantile normalization to find the optimal normalization 
for CNV detection based on SNP array data. We also 
explored the effect of Robust Multichip Average (RMA) 
background correction for each normalization process. 
In total, the following 4 combinations of normalization 
were tried: 1) Median normalization without RMA back-
ground correction, 2) Quantile normalization without 
RMA background correction, 3) Median normalization 
with RMA background correction, and 4) Quantile nor-
malization with RMA background correction. CNV was 
called using SW-ARRAY algorithm. We applied 4 differ-
ent combinations of normalization and compared the ef-
fect using intensity ratio profile, box plot, and MA plot. 
When we applied median and quantile normalizations 
without RMA background correction, both methods 
showed similar normalization effect and the final CNV 
calls were also similar in terms of number and size. In 
both median and quantile normalizations, RMA back-
ground correction resulted in widening the range of in-
tensity ratio distribution, which may suggest that RMA 
background correction may help to detect more CNVs 
compared to no correction.
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Introduction
A wide spectrum of genomic variation is present in the 
human genome, from single nucleotide polymorphisms 
(SNP) to microscopically visible, large structural altera-
tions. Recently, the presence of large-scale genomic 
variation, named copy number variation (CNVs), was un-
covered (Iafrate et al., 2004; Sebat et al., 2004). Since 
the discovery, widespread presence of DNA structural 
variation in phenotypically normal individuals has been 
well known (Kim et al., 2008). Accumulating evidence 
suggests CNV is not just inter-individual variation con-
tributing to diversity of phenotypes in human beings, but 
also very likely to associate with various human dis-
eases (Estivill & Armengol 2007; McCarroll & Altshuler 
2007). Therefore precise and reliable identification of 
CNV is still important to fully understand the effect of 
CNV on genome diversity and background of complex 
diseases. 
  For defining CNV accurately, resolution is one of the 
important issues. When CNV was first uncovered, ap-
proximately 12 CNVs per genome were identified 
through both BAC array and oligoarray (Iafrate et al., 
2004; Sebat et al., 2004). In 2006, Affymetrix GeneChip 
Human Mapping 500K early access version was applied 
to define the CNVs from 269 HapMap individuals 
(Redon et al., 2006). In that study, ∼1500 CNVs were 
identified and the median size of them was smaller (80 
Kb) than those defined by tiling BAC array (230 Kb). In 
addition to SNP-based CNV analysis, recent higher res-
olution oligoarray platforms were introduced and re-
vealed that the human genome may contain more CNVs 
than previously thought and that the average size of 
CNVs might be smaller than previously reported (de 
Smith et al., 2007; Perry et al., 2008). 
  In spite of advance of new technologies, SNP marker 
has been used frequently to detect CNVs because of 
several advantages. First, due to large number of known 
SNP resources, extremely high resolution SNP genotyp-
ing chips (＞1 Million) can be designed and currently 
available. Secondly, accompanying SNP genotype in-
formation is useful for disease association study and 
CNV-SNP combined interpretation can achieve new 
breakthrough in understanding genetic contribution to 
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Fig. 1. Comparison of the effect of different normalizations. 

(A) Rraw intensity ratio values of Chromosome 13 from one 

of four normal Koreans before normalization. Intensity ratios 

deviate asymmetrically from zero on a log2 scale. B-E, the 

intensity ratio profile normalized by (B) median normal-

ization, (C) median normalization with RMA background cor-

rection, (D) quantile normalization and (E) quantile normal-

ization with RMA background correction on the same 

sample.

the complex diseases. But, the analysis of SNP chip da-
ta for identifying CNV has not been well established. For 
example, for CNV detection, signal intensities, instead of 
genotype, are used, which requires a normalization 
process to remove systemic errors due to experimental 
conditions ranging from the array manufacturing process 
to the quantification of the spot intensities. Since there 
are various normalization procedures available which 
can produce different results, it is important to under-
stand the basic characteristics of various methods be-
fore applying to the data. In this study, we compared 
various normalization methods for Affymetrix SNP array 
5.0 data for CNV analysis and suggest optimal normal-
ization procedure for reliable CNV call.

Methods

Study subjects

Four normal Koreans (K1-4) and NA10851 HapMap male 
samples were genotyped using Affymetrix Genome-Wide 
Human SNP array 5.0. NA10851 DNA was purchased 
from Coriell Institute for Medical Research (Camden, 
NJ). Genomic DNA was extracted from blood by using 
Genomic DNA prep kit (SolGent, Daejeon, Korea). DNA 
was used for hybridization after quantification and qual-
ity check.

Pre-processing SNP array data 

Hybridization was performed according to manufac-
turer’s instructions. Affymetrix Genome-Wide Human 
SNP array 5.0 platforms use single-color detection sys-
tem in which one sample is hybridized per chip. 
Therefore, normalization of this platform data is per-
formed between arrays. Among perfect match (PM) and 
mismatch (MM) probes, only PM probe intensity data 
were used for CNV analysis. Before applying normal-
ization procedures, we performed allele correction, sum-
marization, and background correction using the soft-
ware provided by Affymetrix.

Comparing four different normalization methods

There are several approaches to normalize systemic var-
iation of microarray data. We evaluated the effect of 
median and quantile normalization to find the optimal 
normalization for CNV detection based on SNP array 
data. We also explored the effect of Robust Multichip 
Average (RMA) background correction on each normal-
ization process. It uses the PM distribution to get an 
overall background level, and transforms values based 
on the background noise and signal. In total, following 

4 combinations of normalization were tried; 1) Median 
normalization without RMA background correction, 2) 
Quantile normalization without RMA background correc-
tion, 3) Median normalization with RMA background cor-
rection, and 4) Quantile normalization with RMA back-
ground correction.

SW-ARRAY analysis

CNV was called based on log2 test/reference ratio using 
SW-ARRAY algorithm (Price et al., 2005). We used me-
dian value＋2.5 MAD (median absolute deviation) and 
the cutoff of island score was ＞1 MAD and a threshold 
of six consecutive probes for calling CNVs.
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Table 1. Characters of the CNVs identified by 4 different 

combinations of normalization

Normalizations Gain Loss Total Size (Kb)

Median 19 7 26 10,9

Quantile 19 10 29 12,2

RMA- Median 95 64 159 19,0

RMA- Quantile 83 44 127 20,6

Fig. 2. Box plots showing the distribution of intensity 

ratios. (A) Raw intensity ratios before normalization of 4 

normal Koreans. (B) Intensity ratios after median nor-

malization. (C) Intensity ratios after median normalization 

with RMA background correction.

Fig. 3. MA plots showing the dis-

tribution of intensity ratios. (A) 

Raw intensity; (B) after median 

normalization; (C) after median 

normalization with RMA back-

ground correction. 

Results

Comparing the effect of different normalizations

Fig. 1A illustrates the example of intensity ratio plot 
where intensity ratios deviate asymmetrically from zero 
on a log2 scale. If CNVs will be defined using this raw 
data, there must be substantial amount of false CNV 
calls. We applied 4 different combinations of normal-
ization and compared the effect. As illustrated in Fig. 1B
∼E, the intensity ratios were shifted toward the horizon-
tal zero line. The plots of median (Fig. 1B) and quantile 
(Fig. 1C) normalized data (without RMA background cor-
rection) showed the similar effect. Most of the intensity 
values are around zero on a log2 scale and range of in-
tensity values was tight, mostly within ±2 in log2 scale. 
Interestingly, RMA background correction made a visible 
effect on the data (Fig. 1D and E). Although RMA back-
ground corrected data also looked well normalized, the 
ranges of intensity values (mostly within ±4 on a log2 
scale) were wider than those without background cor-
rection regardless of the normalization methods.
  When we observed the box plot showing intensity ra-
tio distribution, the effects of normalization and RMA 

background correction were similar as describe above. 
Fig. 2 illustrates the examples of the effect of median 
normalization with and without RMA background correc-
tion. Raw data before normalization of the 4 Korean 
samples were highly deviated (Fig. 2A). After median 
normalization, all 4 intensity ratio distributions looked 
similar centering around 1 but RMA background cor-
rected data showed wider range of intensity ratio dis-
tribution than the data without being RMA corrected 
(Fig. 2B and C). 
  We also used the MA plot to visualize the effects of 
normalization (Fig. 3). Raw intensity data which revealed 
a deviation from expected horizontal zero line migrated 
to horizontal zero line after applying median normal-
ization (Fig. 3A, B). When median normalization was 
performed with RMA background correction, the MA 
plot showed well-balanced intensity distribution around 
zero, but the range of intensity ratios was larger than 
those of median normalization only (Fig. 3C).

Comparing the CNV calls between different nor-
malizations

We then observed the CNV calls using SW-ARRAY al-
gorithm as described in methods from the data which 
were preprocessed and normalized in 4 different ways 
(Table 1). Numbers of CNVs identified using both me-
dian (n=26) and quantile (n=29) normalized data were 
similar and most CNVs identified in both normalizations 
were concordant, 96.2% (25/26) in median; 86.2% 
(25/29) in quantile. Mean size of CNVs identified through 
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quantile normalization (12.2 Kb) was slightly bigger than 
those identified through median normalization (10.9 Kb). 
Interestingly, more CNVs were identified in RMA back-
ground corrected data than in those without background 
correction. Mean size of CNVs from both median-RMA 
background correction and quantile-RMA background 
correction was approximately 20 Kb, which is on aver-
age bigger than those identified without background 
correction. In RMA background correction based nor-
malizations, most CNVs identified in both methods were 
concordant, 79.9% (127/159) in RMA-median; 100% 
(127/127) in RMA-quantile. These results imply that the 
effect of median and quantile normalizations is generally 
comparable and RMA background correction may help 
to detect more CNVs compared to without correction.

Discussion
SNP chip based CNV analysis is now one of the most 
common approaches to detect CNV with higher reso-
lution CNV. However, due to the fundamental difference 
in design of the probes which were not designed for 
measuring the signal intensities but for SNP call, data 
processing including normalization for defining quantita-
tive measurement of structural variation has not been 
well established. In this study, we compared various 
normalization methods for Affymetrix SNP array 5.0 data 
based CNV analysis to select the most reliable normal-
ization methods. 
  When we applied median and quantile normalizations 
without RMA background correction, both methods 
showed similar normalization effect and final CNV calls 
were also similar in terms of number and size. We ap-
plied RMA background correction before the 2 different 
normalizations. In both median and quantile normal-
izations, RMA background correction resulted in widen-
ing the range of intensity ratio distribution, which may 
explain why RMA background correction plus median or 
quantile normalization combination identified approx-
imately 5 times more CNVs than without RMA. Average 
size of CNV from RMA plus normalization combination 
(∼20 Kb) was slightly bigger than that from normal-
ization without RMA (∼12 Kb). However, both sizes are 
much smaller than those identified through Affymetrix 
500K EA (∼80 Kb) (Redon et al., 2006). RMA back-
ground correction may increase the sensitivity in detect-
ing CNVs, but the actual sensitivity should be estimated 
through molecular validation of identified CNVs, e.g. 
MLPA. 
  There are several limitations in this study. First, since 

we focused on evaluating the effects of different normal-
ization methods, we did not optimize the parameters for 
SW-Array algorithm. Second, we did not validate all the 
CNVs identified by 4 different normalization combina-
tions, which means the sensitivity and specificity of 
these different combinations were not evaluated. It is 
hard to make a solid conclusion on whether RMA back-
ground correction plus median or quantile normalization 
is the best optimized normalization method. These limi-
tations will be able to overcome through molecular 
validation. In conclusion, our results suggest that the ef-
fect of different normalization methods is relatively small 
compared to that of RMA background correction. 
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