• 제목/요약/키워드: SMA Constitutive Equation

검색결과 15건 처리시간 0.026초

형상기억합금을 이용한 3 차원 비선형 트러스 지능작동기 해석 (Analysis of 3-D non-linear truss smart actuator using SMA)

  • 양성필;김상헌;리녕학;류정현;조맹효
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.557-561
    • /
    • 2008
  • Shape memory alloys (SMA) have interesting features which are the superelastic effect (SE), shape memory effect (SME), two-way SME (TWSME), and so on. These are utilized in actuation factor. The thermo-mechanical constitutive equations of SMA proposed by Lagoudas et al. were employed in the present study for simulating SMA truss structures. The constitutive equation includes the necessary internal variables to account for the material transformations and is utilized in the non-linear finite element procedure of three dimensional truss structures that composed SMA bar (wholly or partially). In this study, we observed which element should be actuated to get a desired shape (actuation shape) from computational analysis. To reach this goal, we apply SMA constitutive equation to non-linear finite element formulation. And then, we simulate two-way shape memory effect as well as superelastic effect of various three dimensional truss using SMA.

  • PDF

형상기억합금의 양방향효과를 이용한 두개의 형상기억합금선이 부착된 작동기의 수치해석 (Numerical Simulation of Double SMA wire Actuator Using Two-Way Shape Memory Effect of SMA)

  • 김상헌;조맹효
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.287-290
    • /
    • 2004
  • A structure using the two-way shape memory effect (TWSME) returns to its initial shape by increasing or decreasing temperature under initial residual stress. Through the thermo-mechanical constitutive equation of shape memory alloy(SMA) proposed by Lagoudas et al., we simulate the behavior of a double actuator in which two SMA wires are attached to the tip of panel under the initially given residual stress. Through the numerical results conducted in the present study, the proposed actuator device is suitable for repeated actuation. The simulation algorithm proposed in the present study can be applied extensively to the analysis of the assembled .system of SMA-actuator and host structure in the practical applications.

  • PDF

하중 트레이닝을 통한 형상기억합금의 특성 실험과 거동 전산 모사 (Experimental Test and Numerical Simulation on the SMA Characteristics and Behaviors through the Load-Training)

  • 김상헌;조맹효
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.700-705
    • /
    • 2007
  • In this study, we observe the application of shape memory alloy(SMA) into smart structures for repeatable actuation, because SMA changes its material properties and characteristics progressively under cyclic loading conditions and finally reaches stable path(state) after a certain number of stress/temperature loading-unloading cycles, so called 'training'. In this paper, SMA wires that have been in a stable state through the training are used. Stress-strain curve of the SMA wire at different temperature levels are measured. In addition, we observe other important effects such as the rate effect according to strain rates for rapid actuation response. The current work presents the experimental test using SMA wire after training completion by mechanical cycling. Through these tests, we measure the characteristics of SMA. With the estimated SMA properties and effects, we compare the experimental results with the simulation results based on the SMA constitutive equations.

  • PDF

반복적인 작동을 위한 형상기억합금의 특성 실험과 거동 전산 모사 (Experimental Test and Numerical Simulation on the SMA Characteristics and Behaviors for Repeated Actuations)

  • 김상헌;조맹효
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.373-379
    • /
    • 2007
  • In this study, we observe the application of shape memory alloy(SMA) into smart structures for repeatable actuation, because SMA changes its material properties and characteristics progressively under cyclic loading conditions and finally reaches stable path(state) after a certain number of stress/temperature loading-unloading cycles, so called 'training'. In this paper, SMA wires that have been in a stable state through the training are used. Stress-strain curve of the SMA wire at different temperature levels are measured. In addition, we observe other important effects such as the rate effect according to strain rates for rapid actuation response. The current work presents the experimental test using SMA wire after training completion by mechanical cycling. Through these tests, we measure the characteristics of SMA. With the estimated SMA properties and effects, we compare the experimental results with the simulation results based on the SMA constitutive equations.

비선형 기하해석을 이용한 SMA 섬유 액츄에이터의 대변형에 대한 변형률 추정 (Estimation of Strain for Large Deformation in SMA-textile Actuator Using Nonlinear Geometry Analysis)

  • 무함마드 우마르 일라히;정재현;살만 칼리드;김흥수
    • 한국전산구조공학회논문집
    • /
    • 제37권4호
    • /
    • pp.259-265
    • /
    • 2024
  • 형상기억합금(SMA)-섬유 액추에이터는 소프트 로봇 공학 및 웨어러블 기술을 포함한 다양한 분야에서 큰 주목을 받아왔다. 이러한 부드러운 액추에이터는 SMA와 단순 직물 섬유를 결합하여 개발되었으며, K 루프와 P 루프라는 두 가지 루프 패턴으로 편직되었다. 두 루프 모두 루프 헤드 형상으로 인해 반대 굽힘 특성으로 구별된다. 그러나 이러한 액추에이터 시트의 편직 공정에는 전문 지식과 시간이 필요하므로 편직 루프 작동 시트의 생산 비용이 높아진다. 이 논문에서는 전압을 가할 때 큰 변형이 발생하는 SMA 직물 기반 액추에이터의 변형을 평가하는 새로운 방법을 소개하였다. SMA 재료의 매우 비선형적인 구성 방정식으로 인해 수치 분석을 위한 분석 모델을 개발하는 것은 어렵다. 따라서 본 연구에서는 SMA 재료의 대변형을 고려하면서 SMA-섬유 액추에이터의 초기 설계에 사용할 수 있는 선형 구성 방정식을 활용하는 새로운 접근 방식을 제안하였다. 전기-기계연성 효과를 모델링할 수 있는 선형구성방적식은 ABAQUS의 UMAT을 사용하여 구현하였다. 이 등가 단위 셀 모델(EUC)은 K-루프와 P-루프의 실험적 굽힘 작동 결과와 비교하여 검증하였다.

형상기억합금 작동기를 이용한 복합재 평판의 형상변형 (Morphing of Composite Plate Using SMA Actuator)

  • 김상헌;조맹효
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.146-149
    • /
    • 2003
  • Two-way shape memory effect(TWSME) under residual stresses are considered in the present study. The structure using two-way shape memory alloy(SMA) concept returns to its initial shape by increasing or decreasing temperature under the initially given residual stress. In the present study, we use a thermo-mechanical constitutive equation of SMA and laminated composite plates are considered as simple morphing structural components which are based on first order shear deformable laminated composite plate with large deflection. Numerical results of fully coupled SMA-composite structures are presented

  • PDF

Thermomechanical Behaviors of Shape Memory Alloy Thin Films and Their Application

  • Roh, Jin-Ho;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.91-98
    • /
    • 2006
  • The thermomechanical behaviors of SMA thin film actuator and their application are investigated. The numerical algorithm of the 2-D SMA thermomechanical constitutive equation is developed and implemented into the ABAQUS finite element program by using the user defined material (UMAT) subroutine. To verify the numerical algorithm of SMAs, the results are compared with experimental data. For the application of SMA thin film actuator, the methodology to maintain the precise configuration of inflatable membrane structure is demonstrated.

형상기억합금 작동기로 작동되는 복합재 보의 형상변형 (Morphing of Composite Beam actuated by SMA Actuator)

  • 김상헌;조맹효
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.123-126
    • /
    • 2004
  • Two-way shape memory effect(TWSME) under residual stresses are considered in the present study. The structure using two-way shape memory effect concept returns to its initial shape by increasing or decreasing temperature under the initially given residual stress. In the present study, we use a thermo-mechanical constitutive equation of SMA and laminated composite beam are considered as simple morphing structural components which are based on large deformable 2D composite beam theory. Numerical results of fully coupled SMA-composite structures are presented.

  • PDF

형상기억합금 트러스 구조물을 이용한 스텐트의 설계 및 해석 (Stent modeling and simulation of truss structure using SMA)

  • 양성필;김상헌;조맹효
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.518-522
    • /
    • 2008
  • Recently, many patients related to heart disease have surgical operation by expanding a blood vessel to treat the angiostenosis. So far most angioplasties have been performed using balloon-dilative stent made of stainless steel. Some researchers are studying the stent made of shape memory alloy (SMA) to operate the angioplasty more easily. and there are several papers which introduce the angioplasty using SMA. However, most of the analysis models for stents are constructed using solid elements. So much computing time is required to solve the analysis model. In this study, we suggest the SMA stent model using 1D truss element which is much faster than stent model using 3D solid element. To represent non-linear behavior of SMA, we apply 1D SMA constitutive equation of Lagoudas'. Pseudo-elastic behavior of stent structures is presented as a numerical example.

  • PDF

Bending and buckling analysis of sandwich Reddy beam considering shape memory alloy wires and porosity resting on Vlasov's foundation

  • Bamdad, Mostafa;Mohammadimehr, Mehdi;Alambeigi, Kazem
    • Steel and Composite Structures
    • /
    • 재36권6호
    • /
    • pp.671-687
    • /
    • 2020
  • The aim of this research is to analyze buckling and bending behavior of a sandwich Reddy beam with porous core and composite face sheets reinforced by boron nitride nanotubes (BNNTs) and shape memory alloy (SMA) wires resting on Vlasov's foundation. To this end, first, displacement field's equations are written based on the higher-order shear deformation theory (HSDT). And also, to model the SMA wire properties, constitutive equation of Brinson is used. Then, by utilizing the principle of minimum potential energy, the governing equations are derived and also, Navier's analytical solution is applied to solve the governing equations of the sandwich beam. The effect of some important parameters such as SMA temperature, the volume fraction of SMA, the coefficient of porosity, different patterns of BNNTs and porous distributions on the behavior of buckling and bending of the sandwich beam are investigated. The obtained results show that when SMA wires are in martensite phase, the maximum deflection of the sandwich beam decreases and the critical buckling load increases significantly. Furthermore, the porosity coefficient plays an important role in the maximum deflection and the critical buckling load. It is concluded that increasing porosity coefficient, regardless of porous distribution, leads to an increase in the critical buckling load and a decrease in the maximum deflection of the sandwich beam.