DOI QR코드

DOI QR Code

Estimation of Strain for Large Deformation in SMA-textile Actuator Using Nonlinear Geometry Analysis

비선형 기하해석을 이용한 SMA 섬유 액츄에이터의 대변형에 대한 변형률 추정

  • Muhammad Umar Elahi (Department of Mechanical, Robotics and Energy Engineering, Dongguk University) ;
  • Jaehyun Jung (Department of Mechanical, Robotics and Energy Engineering, Dongguk University) ;
  • Salman Khalid (Department of Mechanical, Robotics and Energy Engineering, Dongguk University) ;
  • Heung Soo Kim (Department of Mechanical, Robotics and Energy Engineering, Dongguk University)
  • 무함마드 우마르 일라히 (동국대학교 기계로봇에너지공학과) ;
  • 정재현 (동국대학교 기계로봇에너지공학과) ;
  • 살만 칼리드 (동국대학교 기계로봇에너지공학과) ;
  • 김흥수 (동국대학교 기계로봇에너지공학과)
  • Received : 2024.06.13
  • Accepted : 2024.07.24
  • Published : 2024.08.31

Abstract

Shape memory alloy (SMA)-textile actuators have attracted significant attention across various fields, including soft robotics and wearable technology. These smooth actuators are developed by combining SMA and simple textile fibers and then knitting them into two loop patterns known as the knit (K-loop) and plain (P-loop) patterns. Both loops are distinguished by opposite bending characteristics owing to loop head geometry. However, the knitting processes for these actuator sheets require expertise and time, resulting in high production costs for knitted loop actuation sheets. This study introduces a novel method by which to assess the strain in SMA textile-based actuators, which experience large deformations when subjected to voltage. Owing to the highly nonlinear constitutive equations of the SMA material, developing an analytical model for numerical analysis is challenging. Therefore, this study employs a novel approach that utilizes a linear constitutive equation to analyze large deformations in SMA material with nonlinear geometry considerations. The user-defined material (UMAT) subroutine integrates the linear constitutive equation into the ABAQUS software suite. This equivalent unit cell (EUC) model is validated by comparing the experimental bending actuation results of K-loops and P-loops.

형상기억합금(SMA)-섬유 액추에이터는 소프트 로봇 공학 및 웨어러블 기술을 포함한 다양한 분야에서 큰 주목을 받아왔다. 이러한 부드러운 액추에이터는 SMA와 단순 직물 섬유를 결합하여 개발되었으며, K 루프와 P 루프라는 두 가지 루프 패턴으로 편직되었다. 두 루프 모두 루프 헤드 형상으로 인해 반대 굽힘 특성으로 구별된다. 그러나 이러한 액추에이터 시트의 편직 공정에는 전문 지식과 시간이 필요하므로 편직 루프 작동 시트의 생산 비용이 높아진다. 이 논문에서는 전압을 가할 때 큰 변형이 발생하는 SMA 직물 기반 액추에이터의 변형을 평가하는 새로운 방법을 소개하였다. SMA 재료의 매우 비선형적인 구성 방정식으로 인해 수치 분석을 위한 분석 모델을 개발하는 것은 어렵다. 따라서 본 연구에서는 SMA 재료의 대변형을 고려하면서 SMA-섬유 액추에이터의 초기 설계에 사용할 수 있는 선형 구성 방정식을 활용하는 새로운 접근 방식을 제안하였다. 전기-기계연성 효과를 모델링할 수 있는 선형구성방적식은 ABAQUS의 UMAT을 사용하여 구현하였다. 이 등가 단위 셀 모델(EUC)은 K-루프와 P-루프의 실험적 굽힘 작동 결과와 비교하여 검증하였다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government. (MSIT) (No.2020R1A2C1006613).

References

  1. Asaka, K., Okuzaki, H. (eds) (2019) Soft Actuators: Materials, Modeling, Applications, and Future Perspectives, Singapore: Springer Singapore, 740.
  2. Chen, Y., Zhang, Y., Li, H., Shen, J., Zhang, F., He, J., Lin, J., Wang, B., Niu, S., Han, Z., Guo, Z. (2023) Bioinspired Hydrogel Actuator for Soft Robotics: Opportunity and Challenges, Nano Today, 49, p.101764.
  3. Chopra, I. (2002) Review of State of Art of Smart Structures and Integrated Systems, AIAA J., 40(11), pp.2145~2187.
  4. Han, M.-W., Ahn, S.-H. (2017) Blooming Knit Flowers: Loop-Linked Soft Morphing Structures for Soft Robotics, Advanced Materials (Deerfield Beach, Fla.), 29(13).
  5. Ikonomidou, V.N., Jayadeva, Newcomb, R.W., Zaghloul, M. (2013) Biomedical Sensor Properties of Flexible PolyVinyliDene Flouride, in Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments, PETRA '13: The 6th International Conference on PErvasive Technologies Related to Assistive Environments, Rhodes Greece: ACM, pp.1~2.
  6. Katzschmann, R.K., Marchese, A.D., Rus, D. (2016) Hydraulic Autonomous Soft Robotic Fish for 3D Swimming, in M.A. Hsieh, O. Khatib, and V. Kumar (eds) Experimental Robotics, Cham: Springer International Publishing (Springer Tracts in Advanced Robotics), pp.405~420.
  7. Khalid, S., Kim, H.S. (2019) Progressive Damage Modeling of Inter and Intra Laminar Damages in Open Hole Tensile Composite Laminates, J. Comput. Struct. Eng. Inst. Korea, 32(4), pp.233~240.
  8. Rodrigue, H., Wang, W., Han, M.W., Ahn, S.H. (2016) Comparison of Mold Designs for SMA-based Twisting Soft Actuator, Sens. & Actuators A: Phys., 237, pp.96~106.
  9. Shin, J., Han, Y.H., Lee, J.H., Han, M.W. (2023) Shape Memory Alloys in Textile Platform: Smart Textile-Composite Actuator and Its Application to Soft Grippers, Sens., 23(3), p.1518.
  10. Tang, X. Li, H., Ma, T., Yang, Y., Luo, J., Wang, H., Jiang, P. (2022) A Review of Soft Actuator Motion: Actuation, Design, Manufacturing and Applications, Actuators, 11(11), p.331.
  11. Zhang, C. Li, M., Chen, Y., Yang, Z., He, B., Li, X., Xu, G. (2023) An Anthropomorphic Robotic Hand with a Soft-Rigid Hybrid Structure and Positive- Negative Pneumatic Actuation, IEEE Robot. & Autom. Lett., 8(7), pp.4346~4353.