• 제목/요약/키워드: SINGLE PENDULUM

검색결과 72건 처리시간 0.028초

횡방향 틸팅 기능을 갖는 이륜 밸런싱 모바일 플랫폼 설계 (Design of a Two-wheeled Balancing Mobile Platform with Tilting Motion)

  • 김상태;서정민;권상주
    • 제어로봇시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.87-93
    • /
    • 2014
  • Conventional two-wheeled balancing robots are limited in terms of turning speed because they lack the lateral motion to compensate for the centrifugal force needed to stop rollover. In order to improve lateral stability, this paper suggests a two-wheeled balancing mobile platform equipped with a tilting mechanism to generate roll motions. In terms of static force analysis, it is shown that the two-body sliding type tilting method is more suitable for small-size mobile robots than the single-body type. For the mathematical modeling, the tilting-balancing platform is assumed as a 3D inverted pendulum and the four-degrees-of-freedom equation of motion is derived. In the velocity/posture control loop, the desired tilting angle is naturally determined according to the changes of forward velocity and steering yaw rate. The efficiency of the developed tilting type balancing mobile platform is validated through experimental results.

Experimental study on a new damping device for mitigation of structural vibrations under harmonic excitation

  • Alih, Sophia C.;Vafaei, Mohammadreza;Ismail, Nufail;Pabarja, Ali
    • Earthquakes and Structures
    • /
    • 제14권6호
    • /
    • pp.567-576
    • /
    • 2018
  • This manuscript introduces a new damping device which is composed of a water tank and a pendulum. The new damping device can be tuned to multiple frequencies. In addition, it has a higher energy dissipation capacity when compared with the conventional Tuned Liquid Dampers (TLDs). In order to evaluate the efficiency of this new damping device a series of free vibration and forced vibration tests were conducted on a scaled down single-story one-bay steel frame. Two different configurations were studied for the mass of the pendulum that included a completely and a partially submerged mass. It was observed that the completely submerged configuration led to 44% higher damping ratio when compared with the conventional TLD. In addition, the completely submerged configuration reduced the peak displacement response of the structure 1.6 times more than the conventional TLD. The peak acceleration response of the structure equipped with the new damping device was reduced twice more than the conventional TLD. It was also found that, when the excitation frequency is lower than the resonance frequency, the conventional TLD performs better than the partially submerged configuration of the new damping device.

퍼지-슬라이딩모드 제어기를 이용한 외바퀴 로봇의 자세제어 및 방향제어 (Attitude and Direction Control of the Unicycle Robot Using Fuzzy-Sliding Mode Control)

  • 이재오;한성익;한인우;이석인;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.275-284
    • /
    • 2012
  • This paper proposes an attitude and direction control of a single wheel balanced robot. A unicycle robot is controlled by two independent control laws: the mobile inverted pendulum control method for pitch axis and the reaction wheel pendulum control method for roll axis. It is assumed that both roll dynamics and pitch dynamics are decoupled. Therefore the roll and pitch dynamics are obtained independently considering the interaction as disturbances to each other. Each control law is implemented by a controller separately. The unicycle robot has two DC motors to drive the disk for roll and to drive the wheel for pitch. Since there is no force to change the yaw direction, the present paper proposes a method for changing the yaw direction. The angle data are obtained by a fusion of a gyro sensor and an accelerometer. Experimental results show the performance of the controller and verify the effectiveness of the proposed control algorithm.

A pole assignment control design for single-input double-output nonlinear mechanical systems

  • Kobayashi, Masahito;Tamura, Katsutoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.144-149
    • /
    • 1993
  • This paper discusses a design of a nonlinear control for a class of single-input double-output nonlinear mechanical systems. When conventional linearization methods are applied to the mechanical systems, some problems of oscillation and unstable phenomena arise. The proposed nonlinear control system resolves these problems. In this design the eigenvalues of the closed-loop nonlinear system are assigned to desired locations and local asymptotic stability of the closed-loop system. is guaranteed. The design method is applied to an inverted pendulum system with a moving weight mechanism. Experimental results show that the proposed nonlinear controller is more effective for stability than the usual linear controller.

  • PDF

입력정합조건을 만족하지 않는 시스템에 대한 강인 제어 (Robust Control for the System with Unmatched Uncertainty)

  • 전보경;장평훈;박주이
    • 제어로봇시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.95-101
    • /
    • 2001
  • Most robust control schemes for stabilizing the systems with uncertainties require that the systems are satisfied with matching conditions. This paper is proposed to robust control using the time delay estimation for the nonlinear single input systems not satisfying the matching conditions. Synthetic input concept is used to design the control law. The unmatched uncertainties considered in this paper are more general than other studies and they need not a special form or information about their bound. We applied the proposed method to a single pendulum with a motor system.

  • PDF

Seismic poundings of multi-story buildings isolated by TFPB against moat walls

  • Shakouri, Ayoub;Amiri, Gholamreza Ghodrati;Miri, Zahra Sadat;Lak, Hamed Rajaei
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.295-307
    • /
    • 2021
  • The gap provided between adjacent structures in the metropolitan cities is mostly narrow due to architectural and financial issues. Consequently, structural pounding occurs between adjacent structures during earthquakes. It causes damages, ranging from minor local to more severe ones, especially in the case of seismically isolated buildings, due to their higher displacements. However, due to the increased flexibility of isolated buildings, the problem could become more detrimental to such structures. The effect of the seismic pounding of moat walls on the response of buildings isolated by Triple Friction Pendulum Bearing (TFPB) is investigated in this paper. To this propose, two symmetric three-dimensional models, including single-story and five-story buildings, are modeled in Opensees. Nonlinear Time History Analyses (NTHA) are performed for seismic evaluation. Also, five different sizes with four different sets of friction coefficients are considered for base isolators to cover a whole range of base isolation systems with various geometry configurations and fundamental period. The results are investigated in terms of base shear, buildings' drift, and roof acceleration. Results indicated a profound effect of poundings against moat walls. In situations of potential pounding, in some cases, the influence of impact on seismic responses of multistory buildings was more remarkable.

후방차분 상태 추정기를 이용한 비선형 계통의 입출력 궤환 선형화 제어기 (Output-Feedback Input-Output Linearizing Controller for Nonlinear System Using Backward-Difference State Estimator)

  • 김성환;박장현
    • 전기전자학회논문지
    • /
    • 제9권1호
    • /
    • pp.72-78
    • /
    • 2005
  • 본 논문은 단일입력 단일출력 비선형 계통에 대해서 강인한 출력궤환 제어기를 제시한다. 이전의 출력궤환 비선형 제어기가 모두 동적인 관측기 기반으로 설계된 반면 본 논문에서는 출력의 과거값들만을 이용하여 상태변수를 추정하는 새로운 방식을 제안하고 이를 후방차분 상태추정기라 명했다. 실제 상태변수값과 추정치와의 오차를 보상하기 위해서 제어입력에 강인제어항을 추가하였고 그것의 이득을 자동으로 조정하는 적응 알고리듬을 채택했다. 전체 폐루프 시스템은 출력 추종 오차가 점근적으로 안정하도록 그리고 모든 신호가 유계이도록 제어입력과 적응법칙이 설계된다. 제시된 제어기를 역진자 계통에 적용한 모의실험을 통해서 성능을 검증하였다.

  • PDF

Dynamic Trajectory Control of a Biped Robot with Curved Soles

  • Yeon, Je-Sung;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.225-230
    • /
    • 2003
  • This paper proposes a desired trajectory and a control algorithm for a biped robot with curved soles. Firstly, we derived the desired trajectory from a model called the Moving Inverted Pendulum Mode (MIPM) of which a contact point of the foot is moving in the horizontal direction. A biped robot with curved soles is under-actuated system, because it has one contact point with the ground during the single supporting phase. Therefore, to solve the under-actuated problem, we changed control variables, used modified dynamic equations and used the computed torque control. The simulation results show that a biped robot with curved soles walks stably. Also, fast walking and natural motion of a biped robot can be implemented.

  • PDF

Implementation of an Intelligent Controller with a DSP and an FPGA for Nonlinear Systems

  • Kim, Sung-Su;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.575-580
    • /
    • 2003
  • In this paper, we develop a control hardware such as an FPGA based general purpose controller with a DSP board to solve nonlinear control problems. PID control algorithms are implemented in an FPGA and neural network control algorithms are implemented in a DSP board. PID controllers implemented on an FPGA was designed by using VHDL to achieve high performance and flexibility. By using high capacity of an FPGA, the additional hardware such as an encoder counter and a PWM generator, can be implemented in a single FPGA device. As a result, the noise and power dissipation problems can be minimized and the cost effectiveness can be achieved. In order to show the performance of the developed controller, it was tested for controlling nonlinear systems such as an inverted pendulum.

  • PDF

하이브리드 면진장치의 뉴로-퍼지 모형화 (Neuro-Fuzzy Modeling Approach for Hybrid Base Isolaton System)

  • 김현수;;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.201-208
    • /
    • 2005
  • Neuro-Fuzzy modeling approach is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system consists of friction pendulum systems (FPS) and a magnetorheological (MR) damper. Fuzzy model of the M damper is trained by ANFIS using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses or experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.

  • PDF