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Ⅰ. Introduction

Nonlinear control has emerged as a research area 

of rapidly increasing activity. Especially, the theory 

of explicitly linearizing the input-output response of 

nonlinear systems to linear systems using the state 

feedback has received great attention [1]-[5]. 

Especially, the output-feedback control of nonlinear 

system has been an extensively researched issue 
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Abstract

This paper describes the design of a robust output-feedback controller for a single-input single-output 

nonlinear dynamical system with a full relative degree. While all the previous research works on the 

output-feedback control are based on dynamic observers, a new state estimator which uses the past values 

of the measurable system output is proposed. We name it backward-difference state estimator since the 

derivatives of the output are estimated simply by backward difference of the present and past values of the 

output. The disturbance generated due to the error between the estimated and real state variables is 

compensated using an additional robustifying control law whose gain is tuned adaptively. Overall control 

system guarantees that the tracking error is asymptotically convergent and that all signals involved are 

uniformly bounded. Theoretical results are illustrated through a simulation example of inverted pendulum.
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보상하기 위해서 제어입력에 강인제어항을 추가하 고 그것의 이득을 자동으로 조정하는 적응 알고리듬을 채택

했다. 전체 폐루프 시스템은 출력 추종 오차가 점근적으로 안정하도록 그리고 모든 신호가 유계이도록 제어입력

과 적응법칙이 설계된다. 제시된 제어기를 역진자 계통에 적용한 모의실험을 통해서 성능을 검증하 다.
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since, in many practical systems, the full state 

variables are not available.

The output-feedback control schemes of nonlinear 

systems have been based on various dynamic state 

observers. In [4], [5], a dynamic observer for the 

systems which can be transformed into the 

output-feedback form is firstly built and then an 

input-output linearizing controller are designed 

based on the observer. The adaptive versions of 

these results are also proposed using filtered 

transformation or error augmentation method [6]-[8]. 

However, the method is restricted on the systems 

which can be transformed to output-feedback form 

where the system nonlinearities are the functions of 

system output only. Another form of observer which 

is known as high-gain observer [9]-[11] is widely 

adopted in the output-feedback scheme since its 

dynamics are linear and independent upon system 

dynamics. This high-gain observer is relatively 

simpler in its structure than proposed in [6]-[8]. 

However, due to a peaking phenomenon, additional 

saturating scheme is to be employed.

In this paper, a new state estimator is proposed f

or a single-input single-output (SISO) feedback line

arizable nonlinear system with full relative degree. 

The proposed observer uses the present and past va

lues of the measurable system output to estimate th

e time derivatives of the system output using back

ward difference approximation. We call this observer 

as backward difference state estimator (BDSE). The 

disturbances generated due to the error between the 

estimated and real state variables are compensated f

or by an additional sliding mode-like robustifying co

ntrol law whose gain is tuned adaptively. Overall ou

tput-feedback control system guarantees that the tra

cking error is asymptotically convergent and that all 

signals involved are uniformly bounded. Theoretical 

results are illustrated through a simulation example 

of inverted pendulum system.

Ⅱ. Controller Design and Stability 

Analysis

In this section, we first set up control objective, 

and then show how to design an input-output 

linearizing controller based on the BDSE to achieve 

the objectives.

2.1 Problem formulation

Consider the nth-order nonlinear system of the 

form

where f and g are continuous functions, u∈R 

and y∈R  are the input and output of the system, 

respectively, and x=[x1 x2…xn]
T

=[x ẋ …x (n-1)]T∈Rn   is the state vector of 

the system. It is assumed that only the system 

output y is measurable. For (1) to be controllable, it 

is required that g( x)≠0 for all x∈Rn. Since 

g(x) is continuous, without loss of generality, we 

assume that g(x) is positive for all x∈Rn. The 

control objective is to force the output $y(t)$ to 

track a given bounded reference signal yd(t), under 

the constraint that all the state variables must be 

stabilized.

2.2 State Estimator

All the previous research results on the 

output-feedback controller are based on the dynamic 

observer of the state-variables. In this paper, we 

propose a static state observer which estimates the 

state variables using the past values of the output.

The followings are from the finite difference 

theory [12]. From the definition of the derivative of 

the output

where d > 0 , we can imply, that for any ε > 0  
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there exists a δ(ε) such that ∀d< δ ,

which means that at arbitrary time t the x1̇=x2 

can be approximated up to arbitrary accuracy by its 

values at two subsequent points. Thus, we define 

x̂2 (t)=(x1 (t)-x1 (t-d))/d  . Similarly, to 

compute the second derivative,

which implies that for any ε > 0  there exists a 

δ(ε) such that ∀d< δ ,

Thus, we define x̂3 (t)=(x2 (t)-x2 (t-d))/d . 

By induction, we propose the following BDSE:

where

We can see that for any ε and time instant t, there 

exists a δ such that the following inequality is 

satisfied

Assumption 1.  The time interval $d$ is sufficiently 

small so that the following inequality holds

for all t≥0

2.3 Controller Design

A control law is proposed as

where k=[kn …k1]
T is determined such that the 

polynomial h(s)=s n+kns
n-1+…+k1  is 

Hurwitz, ê=xd-x̂ , xd=[yd  ẏd … y
(n-1)
d ]T , 

and β is a robustness term which compensates for 

the disturbances due to the error between the state 

variables and their estimates.

Let e=yd-y and e=xd-x . Substituting (10) 

into (1) can yield the following error dynamics.

or

where

Since A is a stable matrix, there exist the 

positive-definite symmetric matrixes P and Q 

satisfying

For the stability analysis, we need the following 

inequality

where lh,h=f,g are Lipschitz constants. The proof 

of (14) is straightforward from the smoothness of 

the functions f and g and (8).

Since, in general, the constants ε is unknown and 

it is hard to calculate the Lipschitz constants lf and 
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lg even if the functions f and g are known, we 

adopt an adaptive scheme for the lumped constant 

defined as

where λ is the constant satisfying

It is obvious that there exists the constant λ in 

(16) from Assumption 1. We denote the estimate of 

ψ* as ψ̂ in what follows.

2.4 Stability Analysis

The following is the main theorem of this paper.

Theorem 1.  Consider the affine nonlinear system 

(1) and  the control input (11) with the robustifying 

control term as

where s=1+|ua|  and

The update law for ψ̂ is determined as

where γ > 0  is the adaptation rate at designers' 

deposal. Then, the tracking error e is UAS and the 

ψ̂ is bounded.

proof.  Consider the Lyapunov function

where ψ̃=ψ̂-ψ*. Differentiating V along the 

solution of (13), we obtain

Using (17), (19) and the following inequality

we can further describe the inequality (24) as

Eqs. (20) and (23) guarantee that |e|, and ψ̃ are 

bounded since V(t)  is nonincreasing. Because all 

the variables in the right-hand side of (12) are 

bounded, ė(t) is also bounded. Integrating both 

sides of (23) and after some manipulations, we have

Since the right side of (24) is bounded, | e(t)|∈L2. 

Using Barbalat's lemma [13], we have lim
t→0
|e|=0. 

This completes the proof.

Remark 1.  In many applications, the sgn(⋅)  in 

(17) is replaced by a saturation function of the form

or a smooth function tanh( e
TPb
εs ) where ε s > 0  

is a small design constant in order to remedy the 

control chattering.

III. Simulation Example

To illustrate the control procedure and 
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performance we apply the proposed robust adaptive 

controller to control the inverted pendulum to track 

a sinewave trajectory. The dynamic equations of the 

system are given by [2].

where x1=θ  represents the angle of the 

pendulum, x2  represents the angular velocity, 

G=9.8m/s2  acceleration due to gravity, mc is 

the mass of cart, m is the mass of pole, l is the 

half length of pole, and u is the applied force 

(control). We choose mc=1kg, m=0.1kg and 

l=0.5m in the following simulations. Clearly, (26) 

is of the same form of (1), thus our control scheme 

can be implemented on this system. We also choose 

the reference signal ym(t)=
π
30
sin( t)  in the 

following simulations.

The design parameters are specified as follows. 

Let k1=2,k2=1  (so that s2+k1s+k2  is 

stable), and Q=I, then we have the Lyapunov 

equation (14) and obtain

which is positive-definite with λ min =0.2929. We 

also choose γ=0.1 and the initial values as 

x(0)=[-0.05 0]T, ψ(0)=0.

For a comparison purpose, two simulations are 

performed with the values of d=0.1sec and 

d=0.01sec. The results of the first simulation 

with d=0.1sec are illustrated in Fig.1-2 and with 

d=0.01sec in Fig. 3-4. From the results, it can 

be inferred that the system output tracks the 

desired output well by the proposed controller. 

Comparing the two controllers also reveals that 

tracking performance is slightly degraded in the 

former case, i.e., with the bigger value of d. The 

smaller the value of d is, the better the tracking 

performance is, which is expected.

IV. Conclusions

This paper describes the design of a robust 

output-feedback controller for a SISO nonlinear 

dynamical system with a full relative degree. The 

proposed state observer called BDSE estimates the 

unmeasurable states by backward difference of the 

present and past values of the output. No restrictive 

dynamic observer as in [6]-[11] is used. The 

disturbance generated due to the error between the 

estimated and real state variables is compensated 

using the additional sliding-mode control law whose 

gain is tuned adaptively. With the proposed BDSE 

and conventional input-output linearizing controller, 

stability analysis for the closed-loop system has 

been performed. Overall control system guarantees 

that the tracking error is asymptotically convergent 

and that all signals involved are uniformly bounded.

Fig. 1. Simulation results with d=0.1sec. (a) y 
(line), yd (dotted line) and e (dashed line). 

(b) x2  (line), yḋ (dotted line), x̂2 (dashed 
line).

그림 1. d=0.1sec.인 경우의 모의실험 결과 (a) y 
(실선), yd (점선) and e (쇄선). (b) x2  

(실선), yḋ (점선), x̂2 (쇄선).
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Fig. 2. Simulation results with d=0.1sec. (a) 

control input. (b) trajectory of ψ̂.
그림 2. d=0.1sec.인 경우의 모의실헐 결과 (a) 

제어입력 (b) ψ̂의 궤적.

Fig. 3. Simulation results with d=0.01sec. (a) y 
(line), yd (dotted line) and e (dashed line). 

(b) x2  (line), yḋ (dotted line), x̂2 (dashed 
line).

그림 3. d=0.01sec.인 경우의 모의실험 결과 (a) y 
(실선), yd (점선) and e (쇄선). (b) x2  (실

선), yḋ (점선), x̂2 (쇄선).

Fig. 4. Simulation results with d=0.01sec. (a) control 

input. (b) trajectory of ψ̂.
그림 4. d=0.01sec.인 경우의 모의실헐 결과 (a) 제어

입력 (b) ψ̂의 궤적.

Acknowledgment

본 논문은 2002 학년도 목포대학교 학술연구비 지원

에 의하여 연구되었음.

References

[1] A. Isidori, Nonlinear Control System, New York: 

Springer Verlag, 1989.

[2] J.-J. E. Slotine and W. Li, Applied Nonlinear 

Control, Prentice-Hall International Editions, N.J., 

1991.

[3] H. K. Khalil, Nonlinear Systems, Macmillan 

Publishing Company, N.J., 1992.

[4] M. Kristic, I. Kanellakopoulos, and P. Kokotovic, 

Nonlinear and Adaptive Control Design, A 

Wiley-Interscience publication, 1995.

[5] P. Tomei R. Marino, Nonlinear Control Design: 

Geometric, Adaptive and Robust, Prentice Hall, 1995.

[6] I. Kanellakopoulos and A. S. Morse P. V. 

Kokotovic, “Adaptive output-feedback control of 

systems with output nonlinearities,” IEEE Trans. 

Automatic Control, vol. 37, no. 11, pp. 1166-1182,  

1992.

[7] P. Tomei R. Marino, “Global adaptive 

output-feedback control of nonlinear systems, part   

i:linear parameterization,” IEEE Trans. Automatic 



(78)

78

Control, vol. 38, no. 1, pp. 17-32, 1993.

[8] P. V. Kokotovic M. Kristic, “Adaptive nonlinear 

output-feedback scheme with marino-tomei 

controller,” IEEE Trans. Automatic Control, vol. 41, 

no. 2, pp. 274-280, 1996.

[9] H. K. Khalil F. Esfandiari, “Output-feedback 

stabilization of fully linearizable systems,” Int. J. 

Control, vol. 56, pp. 1007-1037, 1992.

[10] H. K. Khalil,“Robust servomechanism 

output-feedback controller for a class of feedback 

linearizable systems,” Automatica, vol. 30, no. 10, 

pp. 1587-1599, 1994.

[11] H. K. Khalil A. N. Atassi, “A separation 

principle for the control of a class of nonlinear 

systems,” Automatica, vol. 46, no. 5, pp. 742-746, 

2001.

[12] C. Jordan, Calculus of finite differences, New 

York,NY:Chelsea Pub. Co., 1960.

[13] P. A. Ioannou and J. Sun, Robust Adaptive 

Control, Englewood Cliffs, NJ:Prentice-Hall, 1996.

저 자 소 개

金 成 奐

1991년 2월 25일 : 고려대학교 전

기공학과 졸업

1995년 2월 25일 : 동대학원 졸업 

(공학석사)

1998년 8월 25일 : 동대학원 졸업 

(공학박사)

1999년 9월 1일 ~ 현재 : 목포대학교 제어시스템공

학과 전임강사/조교수

<주관심분야> 지능제어, AC전동기 제어, 마이크로

프로세서 응용

朴 張 鉉

1995년 2월 25일 : 고려대학교 전기

공학과 졸업

1997년 8월 25일 : 동대학원 졸업 

(공학석사)

2002년 8월 25일 : 동대학원 졸업 

(공학박사)

2003년 3월 1일 ~ 현재 : 목포대학교 제어시스템공학

과 전임강사/조교수

<주관심분야> 지능시스템, 비선형제어, 적응제어, 마

이크로프로세서 응용


